Efficient ANN-based interconnect delay and crosstalk modeling

A. Ilumoka
{"title":"Efficient ANN-based interconnect delay and crosstalk modeling","authors":"A. Ilumoka","doi":"10.1109/ICMEL.2000.838793","DOIUrl":null,"url":null,"abstract":"The dominance of system performance by interconnect delay in deep-submicron design presents many challenges to physical design tool developers. This paper presents an efficient ANN-based technique for modeling interconnect crosstalk in integrated circuits. ANN models for user-defined interconnect primitives called wirecells are trained and tested using a database created using a suitable simulation package. For fixed wirecell length and geometry, inputs to the ANN include signal frequency, input voltage amplitude, near and far end termination impedances. Outputs derived from the ANN include crosstalk voltage peak and RMS values and spectral composition. Experimental results demonstrate the ability of this approach to successfully predict coupled noise in modest cpu times compared with existing approaches.","PeriodicalId":215956,"journal":{"name":"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEL.2000.838793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The dominance of system performance by interconnect delay in deep-submicron design presents many challenges to physical design tool developers. This paper presents an efficient ANN-based technique for modeling interconnect crosstalk in integrated circuits. ANN models for user-defined interconnect primitives called wirecells are trained and tested using a database created using a suitable simulation package. For fixed wirecell length and geometry, inputs to the ANN include signal frequency, input voltage amplitude, near and far end termination impedances. Outputs derived from the ANN include crosstalk voltage peak and RMS values and spectral composition. Experimental results demonstrate the ability of this approach to successfully predict coupled noise in modest cpu times compared with existing approaches.
高效的基于人工神经网络的互连延迟和串扰建模
在深亚微米设计中,互连延迟对系统性能的影响对物理设计工具的开发人员提出了许多挑战。提出了一种基于人工神经网络的集成电路互连串扰建模方法。用于用户定义的互连原语(称为wirecells)的人工神经网络模型使用使用合适的仿真包创建的数据库进行训练和测试。对于固定的线室长度和几何形状,人工神经网络的输入包括信号频率、输入电压幅度、近端和远端终端阻抗。人工神经网络的输出包括串扰电压峰值和均方根值以及频谱组成。实验结果表明,与现有方法相比,该方法能够在适当的cpu时间内成功预测耦合噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信