{"title":"Interaction-aware Maneuver Prediction for Autonomous Vehicles using Interaction Graphs","authors":"I. P. Gomes, C. Premebida, D. Wolf","doi":"10.1109/IV55152.2023.10186811","DOIUrl":null,"url":null,"abstract":"Intention prediction (IP) is a challenging task for intelligent vehicle’s perception systems. IP provides the likelihood, or probability, of a target vehicle to perform a maneuver subjected to a finite set of possibilities. There are many factors that influence the decision-making process of a driver, which should be considered in a prediction framework. In addition, the lack of labeled large-scale dataset with maneuver annotation imposes another challenge to the task. This paper proposes an Interaction-aware Maneuver Prediction framework, called IAMP, using interaction graphs to extract complex interaction features from traffic scenes. In addition, we explored a semi-supervised approach called Noisy Student to take advantage of unlabeled data in the training step. Experimental results show relevant improvement when using unlabeled data, increasing the average performance of a classifier by 7.17% of accuracy. Moreover, this approach also made it possible to obtain an intention predictor with similar results to a classifier., even when using a shorter observation horizon.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intention prediction (IP) is a challenging task for intelligent vehicle’s perception systems. IP provides the likelihood, or probability, of a target vehicle to perform a maneuver subjected to a finite set of possibilities. There are many factors that influence the decision-making process of a driver, which should be considered in a prediction framework. In addition, the lack of labeled large-scale dataset with maneuver annotation imposes another challenge to the task. This paper proposes an Interaction-aware Maneuver Prediction framework, called IAMP, using interaction graphs to extract complex interaction features from traffic scenes. In addition, we explored a semi-supervised approach called Noisy Student to take advantage of unlabeled data in the training step. Experimental results show relevant improvement when using unlabeled data, increasing the average performance of a classifier by 7.17% of accuracy. Moreover, this approach also made it possible to obtain an intention predictor with similar results to a classifier., even when using a shorter observation horizon.