Deep Learning Approach for Multi-Class Segmentation in Industrial CT-Data

Tim Schanz, Robin Tenscher-Philipp, Fabian Marschall, Martin Simon
{"title":"Deep Learning Approach for Multi-Class Segmentation in Industrial CT-Data","authors":"Tim Schanz, Robin Tenscher-Philipp, Fabian Marschall, Martin Simon","doi":"10.58286/28077","DOIUrl":null,"url":null,"abstract":"\nIn this work, a multiclass segmentation of defects on industrial CT data is performed. The segmentation is implemented by using artificial neural networks (ANNs). Different architectures are evaluated and compared to find the best model architecture for this task. Different metrics for segmentation and classification analysis are used to evaluate the networks. The three best models are presented in this paper. All of them obtained positive results; the model with the U-Net architecture achieved the best results with a remarkable segmentation performance of 90.18% and a classification performance of 95.77%.\n","PeriodicalId":383798,"journal":{"name":"Research and Review Journal of Nondestructive Testing","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Review Journal of Nondestructive Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58286/28077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a multiclass segmentation of defects on industrial CT data is performed. The segmentation is implemented by using artificial neural networks (ANNs). Different architectures are evaluated and compared to find the best model architecture for this task. Different metrics for segmentation and classification analysis are used to evaluate the networks. The three best models are presented in this paper. All of them obtained positive results; the model with the U-Net architecture achieved the best results with a remarkable segmentation performance of 90.18% and a classification performance of 95.77%.
工业ct数据多类分割的深度学习方法
在这项工作中,对工业CT数据进行了多类缺陷分割。利用人工神经网络(ann)实现分割。评估和比较不同的体系结构,以找到适合此任务的最佳模型体系结构。使用不同的分割和分类分析指标来评估网络。本文给出了三种最佳模型。所有试验均取得了阳性结果;采用U-Net架构的模型取得了最佳效果,分割性能达到90.18%,分类性能达到95.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信