Performance modeling of analog integrated circuits using least-squares support vector machines

T. Kiely, G. Gielen
{"title":"Performance modeling of analog integrated circuits using least-squares support vector machines","authors":"T. Kiely, G. Gielen","doi":"10.1109/DATE.2004.1268887","DOIUrl":null,"url":null,"abstract":"This paper describes the application of least-squares support vector machine (LS-SVM) training to analog circuit performance modeling as needed for accelerated or hierarchical analog circuit synthesis. The training is a type of regression, where a function of a special form is fit to experimental performance data derived from analog circuit simulations. The method is contrasted with a feasibility model approach based on the more traditional use of SVMs, namely classification. A design of experiments (DOE) strategy is reviewed which forms the basis of an efficient simulation sampling scheme. The results of our functional regression are then compared to two other DOE-based fitting schemes: a simple linear least-squares regression and a regression using posynomial models. The LS-SVM fitting has advantages over these approaches in terms of accuracy of fit to measured data, prediction of intermediate data points and reduction of free model tuning parameters.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1268887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

Abstract

This paper describes the application of least-squares support vector machine (LS-SVM) training to analog circuit performance modeling as needed for accelerated or hierarchical analog circuit synthesis. The training is a type of regression, where a function of a special form is fit to experimental performance data derived from analog circuit simulations. The method is contrasted with a feasibility model approach based on the more traditional use of SVMs, namely classification. A design of experiments (DOE) strategy is reviewed which forms the basis of an efficient simulation sampling scheme. The results of our functional regression are then compared to two other DOE-based fitting schemes: a simple linear least-squares regression and a regression using posynomial models. The LS-SVM fitting has advantages over these approaches in terms of accuracy of fit to measured data, prediction of intermediate data points and reduction of free model tuning parameters.
基于最小二乘支持向量机的模拟集成电路性能建模
本文描述了基于最小二乘支持向量机(LS-SVM)训练的模拟电路性能建模方法在加速或分层模拟电路合成中的应用。训练是一种回归,其中一种特殊形式的函数适合于模拟电路模拟得出的实验性能数据。该方法与基于支持向量机(即分类)更传统的可行性模型方法进行了对比。实验策略的设计是有效模拟采样方案的基础。然后将我们的函数回归的结果与其他两种基于doe的拟合方案进行比较:简单的线性最小二乘回归和使用多项式模型的回归。LS-SVM拟合在拟合测量数据的精度、中间数据点的预测和减少自由模型调整参数方面优于这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信