The Inclusion Structure of Boolean Weak Bases

Victor Lagerkvist, Biman Roy
{"title":"The Inclusion Structure of Boolean Weak Bases","authors":"Victor Lagerkvist, Biman Roy","doi":"10.1109/ISMVL.2019.00014","DOIUrl":null,"url":null,"abstract":"Strong partial clones are composition closed sets of partial operations containing all partial projections, characterizable as partial polymorphisms of sets of relations <tex>$\\Gamma(\\mathrm{pPol}(\\Gamma))$</tex>. If <tex>$\\mathcal{C}$</tex> is a clone it is known that the set of all strong partial clones whose total component equals <tex>$\\mathcal{C}$</tex>, has a greatest element <tex>$\\mathrm{pPo}1(\\Gamma_{w})$</tex>, where <tex>$\\Gamma_{w}$</tex> is called a weak base. Weak bases have seen applications in computer science due to their usefulness for proving complexity classifications for constraint satisfaction related problems. In this paper we completely describe the inclusion structure between <tex>$\\mathrm{pPol}(\\Gamma_{w}), \\mathrm{pPol}(\\Delta_{w})$</tex> for all Boolean weak bases <tex>$\\Gamma_{w}$</tex> and <tex>$\\Delta_{w}$</tex>.","PeriodicalId":329986,"journal":{"name":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"86 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2019.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Strong partial clones are composition closed sets of partial operations containing all partial projections, characterizable as partial polymorphisms of sets of relations $\Gamma(\mathrm{pPol}(\Gamma))$. If $\mathcal{C}$ is a clone it is known that the set of all strong partial clones whose total component equals $\mathcal{C}$, has a greatest element $\mathrm{pPo}1(\Gamma_{w})$, where $\Gamma_{w}$ is called a weak base. Weak bases have seen applications in computer science due to their usefulness for proving complexity classifications for constraint satisfaction related problems. In this paper we completely describe the inclusion structure between $\mathrm{pPol}(\Gamma_{w}), \mathrm{pPol}(\Delta_{w})$ for all Boolean weak bases $\Gamma_{w}$ and $\Delta_{w}$.
布尔弱碱的包含结构
强偏克隆是包含所有偏投影的偏操作的复合闭集,可表征为关系集的偏多态性 $\Gamma(\mathrm{pPol}(\Gamma))$. 如果 $\mathcal{C}$ 一个克隆是否已知所有强部分克隆的集合其总分量等于 $\mathcal{C}$,有一个最大的元素 $\mathrm{pPo}1(\Gamma_{w})$,其中 $\Gamma_{w}$ 叫做弱碱。弱基在计算机科学中得到了应用,因为它们可以证明约束满足相关问题的复杂性分类。本文完整地描述了两者之间的包含结构 $\mathrm{pPol}(\Gamma_{w}), \mathrm{pPol}(\Delta_{w})$ 对于所有布尔弱碱 $\Gamma_{w}$ 和 $\Delta_{w}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信