Early prediction of NBTI effects using RTL source code analysis

Jayanand Asok Kumar, K. Butler, Heesoo Kim, Shobha Vasudevan
{"title":"Early prediction of NBTI effects using RTL source code analysis","authors":"Jayanand Asok Kumar, K. Butler, Heesoo Kim, Shobha Vasudevan","doi":"10.1145/2228360.2228506","DOIUrl":null,"url":null,"abstract":"In present day technology, the design of reliable systems must factor in temporal degradation due to aging effects such as Negative Bias Temperature Instability (NBTI). In this paper, we present a methodology to estimate delay degradation early at the Register Transfer Level (RTL). We statically analyze the RTL source code to determine signal correlations. We then determine probability distributions of RTL signals formally by using probabilistic model checking. Finally, we propagate these signal probabilities through delay macromodels and estimate the delay degradation. We demonstrate our methodology on several benchmarks RTL designs. We estimate the degradation with <;10% error and up to 18.2× speedup in runtime as compared to estimation using gate-level simulations.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In present day technology, the design of reliable systems must factor in temporal degradation due to aging effects such as Negative Bias Temperature Instability (NBTI). In this paper, we present a methodology to estimate delay degradation early at the Register Transfer Level (RTL). We statically analyze the RTL source code to determine signal correlations. We then determine probability distributions of RTL signals formally by using probabilistic model checking. Finally, we propagate these signal probabilities through delay macromodels and estimate the delay degradation. We demonstrate our methodology on several benchmarks RTL designs. We estimate the degradation with <;10% error and up to 18.2× speedup in runtime as compared to estimation using gate-level simulations.
早期预测NBTI效应使用RTL源代码分析
在当今的技术中,可靠系统的设计必须考虑到由于老化效应(如负偏置温度不稳定性(NBTI))而导致的时间退化。在本文中,我们提出了一种在寄存器传输层(RTL)早期估计延迟退化的方法。我们静态分析RTL源代码以确定信号相关性。然后,我们使用概率模型检验正式确定RTL信号的概率分布。最后,我们通过延迟宏模型传播这些信号概率,并估计延迟退化。我们在几个基准RTL设计上演示了我们的方法。与使用门级模拟的估计相比,我们估计的退化误差小于10%,运行时加速高达18.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信