Stereo matching based on robust likelihoods and MST leveraged smoothness priors

Tianliang Liu, Liang Wang, Xiuchang Zhu
{"title":"Stereo matching based on robust likelihoods and MST leveraged smoothness priors","authors":"Tianliang Liu, Liang Wang, Xiuchang Zhu","doi":"10.1109/ICOSP.2012.6491783","DOIUrl":null,"url":null,"abstract":"This paper proposes a global stereo correspondence using robust matching likelihoods and minimum spanning tree (MST) leveraged smooth priors in a probabilistic graphical model framework. The matching likelihoods of the stereo correspondence can be robustly constructed as data term by aggregating initial matching costs from Weber local descriptors using an unsymmetrical guided filtering in a linear model. The disparity priors are devised as smooth term to characterize the smoothness constraints leveraged by the MST structure. The presented stereo approach provides an effective and efficient way to reflect robust visual dissimilarity and resolve local and regional discontinuities. Experiments demonstrate that the proposed global stereo matching method can produce piecewise smooth, accurate and dense disparity map, while removing effectively the visual ambiguity of the stereo matching problem.","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6491783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a global stereo correspondence using robust matching likelihoods and minimum spanning tree (MST) leveraged smooth priors in a probabilistic graphical model framework. The matching likelihoods of the stereo correspondence can be robustly constructed as data term by aggregating initial matching costs from Weber local descriptors using an unsymmetrical guided filtering in a linear model. The disparity priors are devised as smooth term to characterize the smoothness constraints leveraged by the MST structure. The presented stereo approach provides an effective and efficient way to reflect robust visual dissimilarity and resolve local and regional discontinuities. Experiments demonstrate that the proposed global stereo matching method can produce piecewise smooth, accurate and dense disparity map, while removing effectively the visual ambiguity of the stereo matching problem.
基于鲁棒似然和MST杠杆平滑先验的立体匹配
本文提出了一种基于鲁棒匹配似然和最小生成树(MST)的全局立体对应的概率图模型框架。在线性模型中,采用非对称引导滤波方法对Weber局部描述符的初始匹配代价进行聚合,从而鲁棒地构造出立体对应的匹配可能性作为数据项。视差先验被设计为平滑项来表征MST结构所利用的平滑约束。所提出的立体方法提供了一种有效和高效的方法来反映鲁棒的视觉差异,并解决局部和区域的不连续性。实验表明,所提出的全局立体匹配方法能够生成分段平滑、精确、密集的视差图,同时有效地消除了立体匹配问题的视觉模糊性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信