Optimizing Deep Learning Based Channel Estimation using Channel Response Arrangement

S. K. Vankayala, Swaraj Kumar, Issaac Kommineni
{"title":"Optimizing Deep Learning Based Channel Estimation using Channel Response Arrangement","authors":"S. K. Vankayala, Swaraj Kumar, Issaac Kommineni","doi":"10.1109/CONECCT50063.2020.9198518","DOIUrl":null,"url":null,"abstract":"The techniques used in deep learning for channel estimation are generally model-centric. These models have changed significantly over the years with each iteration yielding a better estimator than the last. Fundamentally, channel estimation works by exploiting correlations in an array of complex numbers, in particular the channel gains for a fading channel. In this paper, we study the effects of the spatial arrangement of channel response and input data, on channel estimation. With the right spatial arrangement, we improved the performance of our convolutional neural network that was used for estimation. Additionally, we optimized the training procedure simultaneously. We experimentally validate the importance of spatial arrangement of data in obtaining an accurate deep learning model for the channel.","PeriodicalId":261794,"journal":{"name":"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT50063.2020.9198518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The techniques used in deep learning for channel estimation are generally model-centric. These models have changed significantly over the years with each iteration yielding a better estimator than the last. Fundamentally, channel estimation works by exploiting correlations in an array of complex numbers, in particular the channel gains for a fading channel. In this paper, we study the effects of the spatial arrangement of channel response and input data, on channel estimation. With the right spatial arrangement, we improved the performance of our convolutional neural network that was used for estimation. Additionally, we optimized the training procedure simultaneously. We experimentally validate the importance of spatial arrangement of data in obtaining an accurate deep learning model for the channel.
利用信道响应安排优化基于深度学习的信道估计
深度学习中用于信道估计的技术通常是以模型为中心的。这些模型在过去几年中发生了显著的变化,每次迭代都会产生比上一次更好的估计器。从根本上说,信道估计的工作原理是利用复数数组中的相关性,特别是衰落信道的信道增益。本文研究了信道响应和输入数据的空间排列对信道估计的影响。通过正确的空间排列,我们提高了用于估计的卷积神经网络的性能。同时对培训流程进行了优化。我们通过实验验证了数据空间排列在获得准确的通道深度学习模型中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信