{"title":"Influence of dimensional proportions of cylindrical explosive on resulting blast wave","authors":"R. Panowicz, Michał Trypolin, M. Konarzewski","doi":"10.5604/12314005.1217252","DOIUrl":null,"url":null,"abstract":"Explosives are broadly used today in many applications, both civilian and military. Many experiments involving explosives use either ball or cylinder charges. However, there can be raised a question whether an exact shape influences the resulting blast wave, and, additionally, if the length to diameter ratio of the cylinder influences the wave. To answer the question, numerical analysis was conducted. A 3D model of the charge was constructed in LS-Prepost software and calculated with use of an explicit FEM method in LS-DYNA software. To determine the change of character of the blast wave, the dimensions of the charge change, whereas the mass and distance from the centre of the charge are constant. Several length to diameter ratios was tested, starting from 0.25, to 2, in 0.25 increments. Two explosives, HMX and TNT, were used. As expected, the resulting Blast wave was different in each case, with 100% difference in pressure values between 0.25 and 2 L to D ratios, especially along the length axis of the cylinder. The results show that the exact diameters of the charges need to be taken into consideration while determining a type of charge to be used as well as determining the goal to be achieved during a particular conducted experiment.","PeriodicalId":165563,"journal":{"name":"Journal of KONES. Powertrain and Transport","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of KONES. Powertrain and Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/12314005.1217252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Explosives are broadly used today in many applications, both civilian and military. Many experiments involving explosives use either ball or cylinder charges. However, there can be raised a question whether an exact shape influences the resulting blast wave, and, additionally, if the length to diameter ratio of the cylinder influences the wave. To answer the question, numerical analysis was conducted. A 3D model of the charge was constructed in LS-Prepost software and calculated with use of an explicit FEM method in LS-DYNA software. To determine the change of character of the blast wave, the dimensions of the charge change, whereas the mass and distance from the centre of the charge are constant. Several length to diameter ratios was tested, starting from 0.25, to 2, in 0.25 increments. Two explosives, HMX and TNT, were used. As expected, the resulting Blast wave was different in each case, with 100% difference in pressure values between 0.25 and 2 L to D ratios, especially along the length axis of the cylinder. The results show that the exact diameters of the charges need to be taken into consideration while determining a type of charge to be used as well as determining the goal to be achieved during a particular conducted experiment.