Further Developments on the (EG) Exponential-MIR Class of Distributions

C. Ampadu
{"title":"Further Developments on the (EG) Exponential-MIR Class of Distributions","authors":"C. Ampadu","doi":"10.15226/2475-4714/3/2/00137","DOIUrl":null,"url":null,"abstract":"The Modified Inverse Rayleigh (MIR) distribution appeared in [Khan, M. S. (2014).Modified inverse Rayleigh distribution. International Journal of Computer Applications, 87(13):28–33] who got some theoretical properties of this distribution, and in[Nasiru, S., Mwita, P. N. and Ngesa, O. (2017). Exponentiated Generalized Exponential Dagum Distribution. Journal of King Saud University- Science, In Press] they introduced the (EG) Exponential-X class of distributions and obtained some theoretical properties with application. By assuming the random variable X follows the MIR distribution, some theoretical properties with application of the (EG) Exponential-MIR Class of distributions appeared in [Nasiru, S., Mwita, P. N. and Ngesa, O. (2018). Discussion on Generalized Modified Inverse Rayleigh Distribution. Applied Mathematics and Information Sciences, 12(1):113-124]. In the present paper we propose some extensions of the (EG) Exponential-MIR class of distributions. The (EG) Exponential- MIR class of distributions is part of Chapter 5 [Nasiru, S. (2018). A New Generalization of Transformed-Transformer Family of Distributions. Doctor of Philosophy thesis in Mathematics (Statistics Option). Pan African University, Institute for Basic Sciences, Technology and Innovation, Kenya], where the naming convention “NEGMIR” is used Keywords: T-X (W) family of distributions; Exponentiated Generalized distributions; Modified Inverse Rayleigh distribution; biological data; health data","PeriodicalId":438775,"journal":{"name":"Journal of Advanced Research in Biotechnology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15226/2475-4714/3/2/00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Modified Inverse Rayleigh (MIR) distribution appeared in [Khan, M. S. (2014).Modified inverse Rayleigh distribution. International Journal of Computer Applications, 87(13):28–33] who got some theoretical properties of this distribution, and in[Nasiru, S., Mwita, P. N. and Ngesa, O. (2017). Exponentiated Generalized Exponential Dagum Distribution. Journal of King Saud University- Science, In Press] they introduced the (EG) Exponential-X class of distributions and obtained some theoretical properties with application. By assuming the random variable X follows the MIR distribution, some theoretical properties with application of the (EG) Exponential-MIR Class of distributions appeared in [Nasiru, S., Mwita, P. N. and Ngesa, O. (2018). Discussion on Generalized Modified Inverse Rayleigh Distribution. Applied Mathematics and Information Sciences, 12(1):113-124]. In the present paper we propose some extensions of the (EG) Exponential-MIR class of distributions. The (EG) Exponential- MIR class of distributions is part of Chapter 5 [Nasiru, S. (2018). A New Generalization of Transformed-Transformer Family of Distributions. Doctor of Philosophy thesis in Mathematics (Statistics Option). Pan African University, Institute for Basic Sciences, Technology and Innovation, Kenya], where the naming convention “NEGMIR” is used Keywords: T-X (W) family of distributions; Exponentiated Generalized distributions; Modified Inverse Rayleigh distribution; biological data; health data
(EG)指数- mir类分布的进一步发展
修正逆瑞利(MIR)分布出现在[Khan, M. S.(2014)]。修正逆瑞利分布。[j] .国际计算机应用学报,87(13):28-33]. Nasiru, S., Mwita, P. N. and Ngesa, O.(2017)。指数广义指数Dagum分布。他们引入了(EG) Exponential-X类分布,并通过应用获得了一些理论性质。通过假设随机变量X遵循MIR分布,在[Nasiru, S., Mwita, P. N. and Ngesa, O.](2018)中出现了一些应用(EG)指数-MIR类分布的理论性质。广义修正逆瑞利分布的讨论。应用数学与信息科学,12(1):113-124。在本文中,我们提出了(EG)指数- mir类分布的一些扩展。(EG)指数- MIR类分布是第5章的一部分[Nasiru, S.(2018)]。变换-变压器分布族的新推广。数学博士学位论文(统计学选项)。泛非大学,基础科学、技术与创新研究所,肯尼亚],其中使用了命名惯例“NEGMIR”。关键词:T-X (W)分布族;指数广义分布;修正逆瑞利分布;生物数据;健康数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信