Object Tracking by introducing Stochastic Filtering into Window-Matching Techniques

F. Vidal, V. Alcalde
{"title":"Object Tracking by introducing Stochastic Filtering into Window-Matching Techniques","authors":"F. Vidal, V. Alcalde","doi":"10.1109/CIRA.2007.382869","DOIUrl":null,"url":null,"abstract":"This paper describes the development and the application of an object tracking algorithm from a sequence of images. The algorithm is based on window-matching techniques using the sum of squared differences (SSD) as a distance-similarity measure, but adding stochastic filtering. The algorithm is then applied for tracking a vehicle on an urban environment and for tracking the ball on a ping-pong game. It is concluded that incorporating the Kalman filtering greatly improves the tracking performance.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the development and the application of an object tracking algorithm from a sequence of images. The algorithm is based on window-matching techniques using the sum of squared differences (SSD) as a distance-similarity measure, but adding stochastic filtering. The algorithm is then applied for tracking a vehicle on an urban environment and for tracking the ball on a ping-pong game. It is concluded that incorporating the Kalman filtering greatly improves the tracking performance.
将随机滤波引入窗口匹配技术的目标跟踪
本文介绍了一种基于图像序列的目标跟踪算法的发展及其应用。该算法基于窗口匹配技术,使用差分平方和(SSD)作为距离相似度量,但加入了随机滤波。然后将该算法应用于城市环境中的车辆跟踪和乒乓球比赛中的球跟踪。结果表明,卡尔曼滤波大大提高了跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信