Solución en serie de potencias para el espectro de energía de un potencial de pozo cuadrado finito unidimensional.

Carlos J Fernández-Rojas, Freddy Fernández-Rojas
{"title":"Solución en serie de potencias para el espectro de energía de un potencial de pozo cuadrado finito unidimensional.","authors":"Carlos J Fernández-Rojas, Freddy Fernández-Rojas","doi":"10.37135/ns.01.08.02","DOIUrl":null,"url":null,"abstract":"En el presente trabajo se estudia el problema de una partícula en un pozo de potencial cuadrado finito. Los autovalores correspondientes al hamiltoniano del problema anterior se encuentran por medio de un método que combina el teorema de inversión de Lagrange con una relación de recurrencia para calcular derivadas de orden superior de una función inversa. La metodología utilizada nos permitió obtener una solución en serie de potencias para el potencial de pozo cuadrado finito que dependen del número cuántico principal y de la fuerza de atracción. Por otro lado, nuestros resultados reproducen, como casos particulares, expresiones generales de los autovalores para una partícula ubicada en el fondo del pozo, en la mitad del pozo y en el tope del pozo de potencial. Las energías calculadas se comparan con las soluciones exactas de la ecuación trascendental para el pozo finito.","PeriodicalId":182401,"journal":{"name":"NOVASINERGIA REVISTA DIGITAL DE CIENCIA, INGENIERÍA Y TECNOLOGÍA","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOVASINERGIA REVISTA DIGITAL DE CIENCIA, INGENIERÍA Y TECNOLOGÍA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37135/ns.01.08.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

En el presente trabajo se estudia el problema de una partícula en un pozo de potencial cuadrado finito. Los autovalores correspondientes al hamiltoniano del problema anterior se encuentran por medio de un método que combina el teorema de inversión de Lagrange con una relación de recurrencia para calcular derivadas de orden superior de una función inversa. La metodología utilizada nos permitió obtener una solución en serie de potencias para el potencial de pozo cuadrado finito que dependen del número cuántico principal y de la fuerza de atracción. Por otro lado, nuestros resultados reproducen, como casos particulares, expresiones generales de los autovalores para una partícula ubicada en el fondo del pozo, en la mitad del pozo y en el tope del pozo de potencial. Las energías calculadas se comparan con las soluciones exactas de la ecuación trascendental para el pozo finito.
一维有限方井势能谱的幂级数解。
本文研究了有限平方势阱中的粒子问题。将拉格朗日反演定理与递归关系相结合,计算逆函数的高阶导数,得到了上述问题哈密顿量对应的特征值。该方法允许我们得到有限方井势的幂级数解,该幂级数解依赖于主量子数和引力。另一方面,我们的结果作为特殊情况再现了位于井底、井中和势井顶部的粒子特征值的一般表达式。计算出的能量与有限井超越方程的精确解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信