{"title":"Keynote speech:Smart configurable wireless sensors and actuators for industrial monitoring and control","authors":"A. M. Madni","doi":"10.1109/ICSENS.2009.5398514","DOIUrl":null,"url":null,"abstract":"Intelligent wireless sensor-based controls have drawn industry attention on account of reduced costs, better power management, ease in maintenance, and effortless deployment in remote and hard-to-reach areas. They have been successfully deployed in many industrial applications such as Maintenance, monitoring, control, security, etc. This presentation focuses on research that addresses the issues faced by instrumentation systems and predictive maintenance industrial applications and presents a design solution to cater to the issues faced by these applications. Instrumentation systems are either open or closed loop control systems formed using sensors and actuators with the objective of controlling certain parameters, or state of the system. The system elements are always in communication with each other, typically, requiring real-time performance and built-in fault-tolerance for communication/node failure - to return to a safe-state in a deterministic amount of time. Predictive-maintenance involves tracking physical state of equipment or machine, and to take action, if an acceptable or allowed state(s) is violated.","PeriodicalId":262591,"journal":{"name":"2009 IEEE Sensors","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2009.5398514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Intelligent wireless sensor-based controls have drawn industry attention on account of reduced costs, better power management, ease in maintenance, and effortless deployment in remote and hard-to-reach areas. They have been successfully deployed in many industrial applications such as Maintenance, monitoring, control, security, etc. This presentation focuses on research that addresses the issues faced by instrumentation systems and predictive maintenance industrial applications and presents a design solution to cater to the issues faced by these applications. Instrumentation systems are either open or closed loop control systems formed using sensors and actuators with the objective of controlling certain parameters, or state of the system. The system elements are always in communication with each other, typically, requiring real-time performance and built-in fault-tolerance for communication/node failure - to return to a safe-state in a deterministic amount of time. Predictive-maintenance involves tracking physical state of equipment or machine, and to take action, if an acceptable or allowed state(s) is violated.