J. Gronicz, L. Aaltonen, N. Chekurov, M. Kosunen, K. Halonen
{"title":"A 1.8 MHz MEMS-based oscillator with synchronous amplitude limiter","authors":"J. Gronicz, L. Aaltonen, N. Chekurov, M. Kosunen, K. Halonen","doi":"10.1109/ECCTD.2013.6662225","DOIUrl":null,"url":null,"abstract":"This paper describes the design and simulation of a MEMS-based oscillator using a synchronous amplitude limiter. The proposed solution does not require external control signals to keep the resonator drive amplitude within the desired range. In a MEMS oscillator the oscillation amplitude needs to be limited to avoid over-driving the resonator which could cause unwanted nonlinear behavior [1] or component failure. The interface electronics has been implemented and simulated in 0.35μm HV CMOS process. The resonator was fabricated using a custom rapid-prototyping process involving Focused Ion Beam masking and Cryogenic Deep Reactive Ion Etching.","PeriodicalId":342333,"journal":{"name":"2013 European Conference on Circuit Theory and Design (ECCTD)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2013.6662225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper describes the design and simulation of a MEMS-based oscillator using a synchronous amplitude limiter. The proposed solution does not require external control signals to keep the resonator drive amplitude within the desired range. In a MEMS oscillator the oscillation amplitude needs to be limited to avoid over-driving the resonator which could cause unwanted nonlinear behavior [1] or component failure. The interface electronics has been implemented and simulated in 0.35μm HV CMOS process. The resonator was fabricated using a custom rapid-prototyping process involving Focused Ion Beam masking and Cryogenic Deep Reactive Ion Etching.