Classification of Gunshots with KNN Classifier

Francisco D. Pichardo-Morales, M. A. Acevedo-Mosqueda, S. L. Coronel
{"title":"Classification of Gunshots with KNN Classifier","authors":"Francisco D. Pichardo-Morales, M. A. Acevedo-Mosqueda, S. L. Coronel","doi":"10.1145/3293614.3293656","DOIUrl":null,"url":null,"abstract":"In this article a system of detection and classification of gunshots is proposed, which consists of using the KNN classifier in the presence and absence of Gaussian additive noise. The results guarantee that the classifier reaches up to 94 % of performance in the absence of noise and only using 10 attributes. The attributes proposed in this article are easy to obtain and in the time domain. Finally, brief comparison of popular classifiers in WEKA is also performed to confirm the KNN classifier's advantage in the presence of noise.","PeriodicalId":359590,"journal":{"name":"Proceedings of the Euro American Conference on Telematics and Information Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Euro American Conference on Telematics and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293614.3293656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article a system of detection and classification of gunshots is proposed, which consists of using the KNN classifier in the presence and absence of Gaussian additive noise. The results guarantee that the classifier reaches up to 94 % of performance in the absence of noise and only using 10 attributes. The attributes proposed in this article are easy to obtain and in the time domain. Finally, brief comparison of popular classifiers in WEKA is also performed to confirm the KNN classifier's advantage in the presence of noise.
用KNN分类器对枪声进行分类
本文提出了一种利用KNN分类器在高斯加性噪声存在和不存在的情况下对枪声进行检测和分类的系统。结果保证分类器在没有噪声且仅使用10个属性的情况下达到高达94%的性能。本文提出的属性易于获取,且在时域内。最后,对WEKA中流行的分类器进行了简要的比较,以确认KNN分类器在存在噪声时的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信