A neuromorphic neural spike clustering processor for deep-brain sensing and stimulation systems

Beinuo Zhang, Zhewei Jiang, Qi Wang, Jae-sun Seo, Mingoo Seok
{"title":"A neuromorphic neural spike clustering processor for deep-brain sensing and stimulation systems","authors":"Beinuo Zhang, Zhewei Jiang, Qi Wang, Jae-sun Seo, Mingoo Seok","doi":"10.1109/ISLPED.2015.7273496","DOIUrl":null,"url":null,"abstract":"This paper presents algorithm and digital hardware design, inspired by biological spiking neural networks, to perform unsupervised, online spike-clustering with high accuracy and low-power consumption in the context of deep-brain sensing and stimulation systems. The proposed hardware contains 1220 digital neurons and 4.86k latch-based synapses, and achieves the average sorting accuracy of 91% whereas the conventional hardware based on the Osort algorithm achieves 69% for the same datasets. Implemented in a 65nm high-Vth, the processor exhibits a footprint of 0.25mm2/ch. and a power consumption of 9.3μW/ch. at VDD of 0.3V.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents algorithm and digital hardware design, inspired by biological spiking neural networks, to perform unsupervised, online spike-clustering with high accuracy and low-power consumption in the context of deep-brain sensing and stimulation systems. The proposed hardware contains 1220 digital neurons and 4.86k latch-based synapses, and achieves the average sorting accuracy of 91% whereas the conventional hardware based on the Osort algorithm achieves 69% for the same datasets. Implemented in a 65nm high-Vth, the processor exhibits a footprint of 0.25mm2/ch. and a power consumption of 9.3μW/ch. at VDD of 0.3V.
一种用于深层脑传感和刺激系统的神经形态神经尖峰聚类处理器
本文提出了一种受生物峰值神经网络启发的算法和数字硬件设计,用于在深度脑传感和刺激系统中进行高精度、低功耗的无监督在线峰值聚类。该硬件包含1220个数字神经元和4.86k个闩锁突触,在相同的数据集上,基于Osort算法的传统硬件的平均排序准确率为91%,而基于Osort算法的传统硬件的平均排序准确率为69%。该处理器采用65nm高vth工艺,占地面积为0.25mm2/ch。功耗为9.3μW/ch。VDD为0.3V时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信