Finger-like manipulator driven by antagonistic nickel-titanium shape memory alloy actuators

S. Dilibal, E. Engeberg
{"title":"Finger-like manipulator driven by antagonistic nickel-titanium shape memory alloy actuators","authors":"S. Dilibal, E. Engeberg","doi":"10.1109/ICAR.2015.7251448","DOIUrl":null,"url":null,"abstract":"Shape memory alloy (SMA) actuators generally have a fast response time when heated. However, the return stroke during cooling can be slow and has been a hindrance to the application of SMA actuators in different areas such as robotic hands. Thus, a novel finger-like antagonistic SMA actuator design is presented in this paper. By using different thermal shape setting processes, one SMA actuator was designed to take a curved shape when heated. This actuator was antagonistically coupled to a different actuator that took a straight shape when heated. Thus, alternately heating each actuator caused the finger-like manipulator to flex and extend rapidly. A comparison study was performed between the novel antagonistic design and a single actuator which showed that the both designs applied approximately the same force with the same velocity when flexing. However, the antagonistic design was able to extend, or open, more rapidly with statistical significance. This was demonstrated for 1.5mm, 1.9mm, and 3.0mm SMA actuator diameters.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Shape memory alloy (SMA) actuators generally have a fast response time when heated. However, the return stroke during cooling can be slow and has been a hindrance to the application of SMA actuators in different areas such as robotic hands. Thus, a novel finger-like antagonistic SMA actuator design is presented in this paper. By using different thermal shape setting processes, one SMA actuator was designed to take a curved shape when heated. This actuator was antagonistically coupled to a different actuator that took a straight shape when heated. Thus, alternately heating each actuator caused the finger-like manipulator to flex and extend rapidly. A comparison study was performed between the novel antagonistic design and a single actuator which showed that the both designs applied approximately the same force with the same velocity when flexing. However, the antagonistic design was able to extend, or open, more rapidly with statistical significance. This was demonstrated for 1.5mm, 1.9mm, and 3.0mm SMA actuator diameters.
由拮抗镍钛形状记忆合金作动器驱动的指状机械手
形状记忆合金(SMA)执行器在加热时通常具有快速的响应时间。然而,冷却过程中的返回行程可能很慢,并且阻碍了SMA致动器在不同领域(如机械手)的应用。因此,本文提出了一种新型的手指状拮抗SMA致动器设计。通过采用不同的热形状设定工艺,设计出一种SMA致动器在受热时呈弯曲形状。该致动器与另一种致动器拮抗耦合,该致动器在加热时呈直线形状。因此,交替加热每个致动器使手指状的机械手迅速弯曲和伸展。对比研究了新型拮抗设计和单作动器,结果表明,两种设计在弯曲时施加的力大致相同,速度相同。然而,拮抗设计能够更快地扩展或打开,具有统计学意义。这在直径为1.5mm、1.9mm和3.0mm的SMA致动器中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信