Abdallah M. Felfel, K. Datta, Arko Dutt, H. Veluri, Ahmed Zaky, A. Thean, M. Aly
{"title":"Quantifying the Benefits of Monolithic 3D Computing Systems Enabled by TFT and RRAM","authors":"Abdallah M. Felfel, K. Datta, Arko Dutt, H. Veluri, Ahmed Zaky, A. Thean, M. Aly","doi":"10.23919/DATE48585.2020.9116410","DOIUrl":null,"url":null,"abstract":"Current data-centric workloads, such as deep learning, expose the memory-access inefficiencies of current computing systems. Monolithic 3D integration can overcome this limitation by leveraging fine-grained and dense vertical connectivity to enable massively-concurrent accesses between compute and memory units. Thin-Film Transistors (TFTs) and Resistive RAM (RRAM) naturally enable monolithic 3D integration as they are fabricated in low temperature (a crucial requirement). In this paper, we explore ZnO-based TFTs and HfO2-based RRAM to build a 1TFT-1R memory subsystem in the upper tiers. The TFT-based memory subsystem is stacked on top of a Si-FET bottom tier that can include compute units and SRAM. System-level simulations for various deep learning workloads show that our TFT-based monolithic 3D system achieves up to 11.4× system-level energy-delay product benefits compared to 2D baseline with off-chip DRAM—5.8× benefits over interposer-based 2.5D integration and 1.25× over 3D stacking of RRAM on silicon using through-silicon vias. These gains are achieved despite the low density of TFT-based RRAM and the higher energy consumption versus 3D stacking with RRAM, due to inherent TFT limitations.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Current data-centric workloads, such as deep learning, expose the memory-access inefficiencies of current computing systems. Monolithic 3D integration can overcome this limitation by leveraging fine-grained and dense vertical connectivity to enable massively-concurrent accesses between compute and memory units. Thin-Film Transistors (TFTs) and Resistive RAM (RRAM) naturally enable monolithic 3D integration as they are fabricated in low temperature (a crucial requirement). In this paper, we explore ZnO-based TFTs and HfO2-based RRAM to build a 1TFT-1R memory subsystem in the upper tiers. The TFT-based memory subsystem is stacked on top of a Si-FET bottom tier that can include compute units and SRAM. System-level simulations for various deep learning workloads show that our TFT-based monolithic 3D system achieves up to 11.4× system-level energy-delay product benefits compared to 2D baseline with off-chip DRAM—5.8× benefits over interposer-based 2.5D integration and 1.25× over 3D stacking of RRAM on silicon using through-silicon vias. These gains are achieved despite the low density of TFT-based RRAM and the higher energy consumption versus 3D stacking with RRAM, due to inherent TFT limitations.