A framework for hardware cellular genetic algorithms: An application to spectrum allocation in cognitive radio

P. V. Santos, J. Alves, J. Ferreira
{"title":"A framework for hardware cellular genetic algorithms: An application to spectrum allocation in cognitive radio","authors":"P. V. Santos, J. Alves, J. Ferreira","doi":"10.1109/FPL.2013.6645599","DOIUrl":null,"url":null,"abstract":"The genetic algorithm (GA) is an optimization metaheuristic that relies on the evolution of a set of solutions (population) according to genetically inspired transformations. In the variant of this technique called cellular GA, the evolution is done separately for subgroups of solutions. This paper describes a hardware framework capable of efficiently supporting custom accelerators for this metaheuristic. This approach builds a regular array of problem-specific processing elements (PEs), which perform the genetic evolution, connected to shared memories holding the local subpopulations. To assist the design of the custom PEs, a methodology based on highlevel synthesis from C++ descriptions is used. The proposed architecture was applied to a spectrum allocation problem in cognitive radio networks. For an array of 5×5 PEs in a Virtex-6 FPGA, the results show a minimum speedup of 22× compared to a software version running on a PC and a speedup near 2000× over a MicroBlaze soft processor.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The genetic algorithm (GA) is an optimization metaheuristic that relies on the evolution of a set of solutions (population) according to genetically inspired transformations. In the variant of this technique called cellular GA, the evolution is done separately for subgroups of solutions. This paper describes a hardware framework capable of efficiently supporting custom accelerators for this metaheuristic. This approach builds a regular array of problem-specific processing elements (PEs), which perform the genetic evolution, connected to shared memories holding the local subpopulations. To assist the design of the custom PEs, a methodology based on highlevel synthesis from C++ descriptions is used. The proposed architecture was applied to a spectrum allocation problem in cognitive radio networks. For an array of 5×5 PEs in a Virtex-6 FPGA, the results show a minimum speedup of 22× compared to a software version running on a PC and a speedup near 2000× over a MicroBlaze soft processor.
硬件细胞遗传算法框架:在认知无线电频谱分配中的应用
遗传算法(GA)是一种优化的元启发式算法,它依赖于一组解(种群)根据遗传启发变换的进化。在这种技术的变体称为细胞遗传算法,进化是单独进行的解决方案的子组。本文描述了一个硬件框架,能够有效地支持这种元启发式的自定义加速器。这种方法建立了一个问题特定处理元素(pe)的常规数组,这些元素执行遗传进化,连接到保存本地亚种群的共享记忆。为了帮助定制pe的设计,使用了一种基于c++描述的高级综合的方法。将该体系结构应用于认知无线电网络中的频谱分配问题。对于Virtex-6 FPGA中的5×5 pe阵列,结果显示,与在PC上运行的软件版本相比,其最小加速提高了22倍,与MicroBlaze软处理器相比,其加速提高了近2000倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信