New Recursive Convolutional GF(2N) Encoders for Parallel Turbo-TCM Schemes

A. Paun, C. Vladeanu, I. Marghescu, S. E. Assad, J. Carlach, R. Quéré
{"title":"New Recursive Convolutional GF(2N) Encoders for Parallel Turbo-TCM Schemes","authors":"A. Paun, C. Vladeanu, I. Marghescu, S. E. Assad, J. Carlach, R. Quéré","doi":"10.1109/AICT.2010.76","DOIUrl":null,"url":null,"abstract":"In this paper, parallel turbo phase shift keying – trellis coded modulation (Turbo PSK-TCM) schemes are designed using recursive convolutional encoders over Galois field GF(2^N). These encoders are designed using the nonlinear left-circulate (LCIRC) function. The LCIRC function performs a bit left circulation over the representation word. An optimum 1-delay GF(2^N) recursive convolutional encoder scheme using LCIRC (RC-LCIRC) is proposed for PSK-TCM schemes. The minimum Euclidian distance is estimated for these PSK-TCM schemes and it is shown that these structures offer the maximum coding gains. However, the RC-LCIRC encoders are less complex than the corresponding binary encoders. The optimum RC-LCIRC encoder is used as component encoder of a parallel turbo PSK-TCM transmission scheme, using the iterative multilevel log-MAP algorithm in the receiver. The bit error rate (BER) is estimated by simulation for the proposed Turbo PSK-TCM transmissions over an additive white Gaussian noise (AWGN) channel, and the results are similar to the conventional Turbo-TCM schemes.","PeriodicalId":339151,"journal":{"name":"2010 Sixth Advanced International Conference on Telecommunications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth Advanced International Conference on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT.2010.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, parallel turbo phase shift keying – trellis coded modulation (Turbo PSK-TCM) schemes are designed using recursive convolutional encoders over Galois field GF(2^N). These encoders are designed using the nonlinear left-circulate (LCIRC) function. The LCIRC function performs a bit left circulation over the representation word. An optimum 1-delay GF(2^N) recursive convolutional encoder scheme using LCIRC (RC-LCIRC) is proposed for PSK-TCM schemes. The minimum Euclidian distance is estimated for these PSK-TCM schemes and it is shown that these structures offer the maximum coding gains. However, the RC-LCIRC encoders are less complex than the corresponding binary encoders. The optimum RC-LCIRC encoder is used as component encoder of a parallel turbo PSK-TCM transmission scheme, using the iterative multilevel log-MAP algorithm in the receiver. The bit error rate (BER) is estimated by simulation for the proposed Turbo PSK-TCM transmissions over an additive white Gaussian noise (AWGN) channel, and the results are similar to the conventional Turbo-TCM schemes.
用于并行Turbo-TCM方案的新型递归卷积GF(2N)编码器
本文设计了基于伽罗瓦场GF(2^N)的递归卷积编码器的并行turbo相移键控-栅格编码调制(turbo PSK-TCM)方案。这些编码器采用非线性左循环(LCIRC)函数设计。LCIRC函数在表示字上执行一点左循环。针对PSK-TCM方案,提出了一种基于LCIRC的最优1延迟GF(2^N)递归卷积编码器方案(RC-LCIRC)。估计了这些PSK-TCM方案的最小欧氏距离,并表明这些结构提供了最大的编码增益。然而,RC-LCIRC编码器比相应的二进制编码器更简单。将优化后的RC-LCIRC编码器作为并行涡轮PSK-TCM传输方案的分量编码器,在接收端采用迭代多级log-MAP算法。通过仿真估计了在加性高斯白噪声(AWGN)信道上所提出的Turbo PSK-TCM传输方案的误码率(BER),结果与传统Turbo- tcm方案相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信