Ching-Tsang Chang, Yi-Tsung Chang, Yun-Jhung Chih, H. Ueng
{"title":"Electrodeposition of diamond-like carbon thin film on conductive indium-tin-oxide glass substrate","authors":"Ching-Tsang Chang, Yi-Tsung Chang, Yun-Jhung Chih, H. Ueng","doi":"10.1109/ISNE.2015.7131998","DOIUrl":null,"url":null,"abstract":"This paper presents electrodeposition of diamond-like carbon (DLC) thin film deposits on indium tin oxide (ITO) glass substrate under voltage 2.1V~120V with mixing varying acetic acids' portions with deionized water, forming 0.2~0.8% electrolytic solutions. The result shows that at deposition temperature 30°~65°, voltage 50V and 0.8% electrolytic solution concentration of DLC thin films, the reflection index reduced to 60%, and theoretical matching refractive index became 1.32. This finding is applicable on various optoelectronic device like protective or window layer of solar cell.","PeriodicalId":152001,"journal":{"name":"2015 International Symposium on Next-Generation Electronics (ISNE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Next-Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2015.7131998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents electrodeposition of diamond-like carbon (DLC) thin film deposits on indium tin oxide (ITO) glass substrate under voltage 2.1V~120V with mixing varying acetic acids' portions with deionized water, forming 0.2~0.8% electrolytic solutions. The result shows that at deposition temperature 30°~65°, voltage 50V and 0.8% electrolytic solution concentration of DLC thin films, the reflection index reduced to 60%, and theoretical matching refractive index became 1.32. This finding is applicable on various optoelectronic device like protective or window layer of solar cell.