FOREX Rate prediction using Chaos and Quantile Regression Random Forest

D. Pradeepkumar, V. Ravi
{"title":"FOREX Rate prediction using Chaos and Quantile Regression Random Forest","authors":"D. Pradeepkumar, V. Ravi","doi":"10.1109/RAIT.2016.7507954","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid of chaos modeling and Quantile Regression Random Forest (QRRF) for Foreign Exchange (FOREX) Rate prediction. The exchange rates data of US Dollar (USD) versus Japanese Yen (JPY), British Pound (GBP), and Euro (EUR) are used to test the efficacy of proposed model. Based on the experiments conducted, we conclude that the proposed model yielded accurate predictions compared to Chaos + Quantile Regression (QR), Chaos+Random Forest (RF) and that of Pradeepkumar and Ravi [12] in terms of both Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE).","PeriodicalId":289216,"journal":{"name":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2016.7507954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents a hybrid of chaos modeling and Quantile Regression Random Forest (QRRF) for Foreign Exchange (FOREX) Rate prediction. The exchange rates data of US Dollar (USD) versus Japanese Yen (JPY), British Pound (GBP), and Euro (EUR) are used to test the efficacy of proposed model. Based on the experiments conducted, we conclude that the proposed model yielded accurate predictions compared to Chaos + Quantile Regression (QR), Chaos+Random Forest (RF) and that of Pradeepkumar and Ravi [12] in terms of both Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE).
基于混沌和分位数回归随机森林的外汇汇率预测
本文提出了一种混合混沌模型和分位数回归随机森林(QRRF)的外汇汇率预测方法。使用美元(USD)对日元(JPY)、英镑(GBP)和欧元(EUR)的汇率数据来检验所提出模型的有效性。基于实验,我们得出结论,与混沌+分位数回归(QR)、混沌+随机森林(RF)以及Pradeepkumar和Ravi[12]的预测相比,所提出的模型在均方误差(MSE)和平均绝对百分比误差(MAPE)方面都得到了准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信