Microsoft Uses Machine Learning and Optimization to Reduce E-Commerce Fraud

Jay Nanduri, Yuting Jia, Anand Oka, John Beaver, Yung-wen Liu
{"title":"Microsoft Uses Machine Learning and Optimization to Reduce E-Commerce Fraud","authors":"Jay Nanduri, Yuting Jia, Anand Oka, John Beaver, Yung-wen Liu","doi":"10.1287/inte.2019.1017","DOIUrl":null,"url":null,"abstract":"The authors discuss Microsoft’s development of a fraud-management system that uses customized long-term and short-term sequential machine learning models to detect both historical and emerging frau...","PeriodicalId":430990,"journal":{"name":"INFORMS J. Appl. Anal.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS J. Appl. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/inte.2019.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The authors discuss Microsoft’s development of a fraud-management system that uses customized long-term and short-term sequential machine learning models to detect both historical and emerging frau...
微软使用机器学习和优化来减少电子商务欺诈
作者讨论了微软开发的欺诈管理系统,该系统使用定制的长期和短期顺序机器学习模型来检测历史和新出现的欺诈行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信