Morphologic based feature extraction for arrhythmia beat detection

Merve Dogruyol Basar, Soner Kotan, N. Kiliç, A. Akan
{"title":"Morphologic based feature extraction for arrhythmia beat detection","authors":"Merve Dogruyol Basar, Soner Kotan, N. Kiliç, A. Akan","doi":"10.1109/TIPTEKNO.2016.7863065","DOIUrl":null,"url":null,"abstract":"Heart disease is one of the diseases which has highest mortality rate recently. Heart's electrical activity examination and interpretation are very important for the understanding of diseases. In this study, electrocardiogram signals are analyzed, then patient's healthy and arrhythmia beats are extracted. RR, QRS, Skewness and Linear Predictive Coding coefficients of the signals are considered for classification of the data. K-NN, Random SubSpaces, Naive Bayes and K-Star classifiers are used. The highest accuracy is obtained with the K-NN algorithm (98.32%). At the second stage of the K-NN algorithm, accuracy levels are examined by changing the ‘k’ parameter.","PeriodicalId":431660,"journal":{"name":"2016 Medical Technologies National Congress (TIPTEKNO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Medical Technologies National Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO.2016.7863065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Heart disease is one of the diseases which has highest mortality rate recently. Heart's electrical activity examination and interpretation are very important for the understanding of diseases. In this study, electrocardiogram signals are analyzed, then patient's healthy and arrhythmia beats are extracted. RR, QRS, Skewness and Linear Predictive Coding coefficients of the signals are considered for classification of the data. K-NN, Random SubSpaces, Naive Bayes and K-Star classifiers are used. The highest accuracy is obtained with the K-NN algorithm (98.32%). At the second stage of the K-NN algorithm, accuracy levels are examined by changing the ‘k’ parameter.
基于形态学特征提取的心律失常检测
心脏病是近年来死亡率最高的疾病之一。心电活动的检查和解释对疾病的认识是非常重要的。本研究通过对心电图信号进行分析,提取患者的健康和心律失常的心跳。考虑信号的RR、QRS、Skewness和Linear Predictive Coding系数对数据进行分类。使用K-NN、随机子空间、朴素贝叶斯和K-Star分类器。K-NN算法的准确率最高(98.32%)。在k - nn算法的第二阶段,通过改变“k”参数来检查准确率水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信