A Mixture Model of Errors in Twin Education Reports

C. Adams
{"title":"A Mixture Model of Errors in Twin Education Reports","authors":"C. Adams","doi":"10.2139/ssrn.2767060","DOIUrl":null,"url":null,"abstract":"Measurement error is a potential problem with estimating the wage effect associated with first-differences in twin's education levels. To account for this, Ashenfelter and Rouse (1998) provided two reports of each twin's education level. One is the own report and the second is the sibling's report. This paper uses recent results on finite mixture models (Adams (2016)), to show this may be enough information to identify the underlying true education level without requiring additive measurement errors. The estimated returns to education are shown to be either the same or below the IV estimates presented in Ashenfelter and Rouse (1998). The strong parametric restrictions of the IV or \"classical measurement error\" approach may overestimate returns to education by up to 21%.","PeriodicalId":289235,"journal":{"name":"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2767060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement error is a potential problem with estimating the wage effect associated with first-differences in twin's education levels. To account for this, Ashenfelter and Rouse (1998) provided two reports of each twin's education level. One is the own report and the second is the sibling's report. This paper uses recent results on finite mixture models (Adams (2016)), to show this may be enough information to identify the underlying true education level without requiring additive measurement errors. The estimated returns to education are shown to be either the same or below the IV estimates presented in Ashenfelter and Rouse (1998). The strong parametric restrictions of the IV or "classical measurement error" approach may overestimate returns to education by up to 21%.
双胞胎教育报告中错误的混合模型
测量误差是一个潜在的问题,在估计工资效应与双胞胎的教育水平的第一差异有关。为了解释这一点,Ashenfelter和Rouse(1998)提供了两份关于双胞胎教育水平的报告。一个是自己的报告,第二个是兄弟姐妹的报告。本文使用了有限混合模型(Adams(2016))的最新结果,以表明这可能是足够的信息来识别潜在的真实教育水平,而不需要附加的测量误差。估计的教育回报要么与Ashenfelter和Rouse(1998)提出的IV估计相同,要么低于IV估计。IV或“经典测量误差”方法的强参数限制可能会高估高达21%的教育回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信