Implementation of Neural Network-Based Linear Block Code Decoder in SAC-OCDMA System

Sheng-Wen Wang, Chun-Ming Huang, Chao-Chin Yang, Gang-Ying Yang
{"title":"Implementation of Neural Network-Based Linear Block Code Decoder in SAC-OCDMA System","authors":"Sheng-Wen Wang, Chun-Ming Huang, Chao-Chin Yang, Gang-Ying Yang","doi":"10.1109/APWCS60142.2023.10234052","DOIUrl":null,"url":null,"abstract":"This study investigates the application of deep learning technology to realize a linear block code decoder in a spectral-amplitude-coding optical code-division multiple access (SAC-OCDMA) system. To enhance the system’s performance, the neural network approach is employed to design a linear block code decoder capable of independently learning the optimal method for recovering original data from received signals. Simulation results demonstrate that the deep learning-based linear block code decoder outperforms traditional decoders at various signal-to-noise ratios (i.e., different active user numbers), showcasing the potential of deep learning in the field of optical communication.","PeriodicalId":375211,"journal":{"name":"2023 VTS Asia Pacific Wireless Communications Symposium (APWCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 VTS Asia Pacific Wireless Communications Symposium (APWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCS60142.2023.10234052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the application of deep learning technology to realize a linear block code decoder in a spectral-amplitude-coding optical code-division multiple access (SAC-OCDMA) system. To enhance the system’s performance, the neural network approach is employed to design a linear block code decoder capable of independently learning the optimal method for recovering original data from received signals. Simulation results demonstrate that the deep learning-based linear block code decoder outperforms traditional decoders at various signal-to-noise ratios (i.e., different active user numbers), showcasing the potential of deep learning in the field of optical communication.
基于神经网络的线性分组码解码器在SAC-OCDMA系统中的实现
本研究探讨了深度学习技术在频谱-幅度编码光码分多址(SAC-OCDMA)系统中实现线性分组码解码器的应用。为了提高系统的性能,采用神经网络方法设计了一种线性分组码解码器,该解码器能够独立学习从接收信号中恢复原始数据的最佳方法。仿真结果表明,基于深度学习的线性分组码解码器在各种信噪比(即不同的活跃用户数)下都优于传统解码器,展示了深度学习在光通信领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信