Work-in-Progress: SuperNAS: Fast Multi-Objective SuperNet Architecture Search for Semantic Segmentation

Marihan Amein, Zhuoran Xiong, Olivier Therrien, B. Meyer, W. Gross
{"title":"Work-in-Progress: SuperNAS: Fast Multi-Objective SuperNet Architecture Search for Semantic Segmentation","authors":"Marihan Amein, Zhuoran Xiong, Olivier Therrien, B. Meyer, W. Gross","doi":"10.1109/CASES55004.2022.00024","DOIUrl":null,"url":null,"abstract":"We present SuperNAS, a fast multi-objective neural architecture search framework for semantic segmentation. SuperNAS subsamples the structure and pre-trained parameters of DeepLabV3+, without fine-tuning, dramatically reducing training time during search. To further reduce candidate evaluation time, we use a subset of the validation dataset during search. Only the final, Pareto-dominant, candidates are ultimately fine-tuned using the complete training set. We evaluate SuperNAS by searching for models that effectively trade accuracy and computational cost on the PASCAL VOC 2012 dataset. SuperNAS finds competitive designs quickly, e.g., taking just 0.5 GPU days to discover a DeepLabV3+ variant that reduces FLOPs and parameters by 10% and 20% respectively, for less than 3% increased error.","PeriodicalId":331181,"journal":{"name":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASES55004.2022.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present SuperNAS, a fast multi-objective neural architecture search framework for semantic segmentation. SuperNAS subsamples the structure and pre-trained parameters of DeepLabV3+, without fine-tuning, dramatically reducing training time during search. To further reduce candidate evaluation time, we use a subset of the validation dataset during search. Only the final, Pareto-dominant, candidates are ultimately fine-tuned using the complete training set. We evaluate SuperNAS by searching for models that effectively trade accuracy and computational cost on the PASCAL VOC 2012 dataset. SuperNAS finds competitive designs quickly, e.g., taking just 0.5 GPU days to discover a DeepLabV3+ variant that reduces FLOPs and parameters by 10% and 20% respectively, for less than 3% increased error.
正在进行的工作:SuperNAS:语义分割的快速多目标超级网络架构搜索
我们提出了一个快速的多目标神经结构搜索框架SuperNAS,用于语义分割。SuperNAS对DeepLabV3+的结构和预训练参数进行子采样,无需微调,极大地减少了搜索过程中的训练时间。为了进一步减少候选评估时间,我们在搜索过程中使用验证数据集的一个子集。只有最终的,帕累托主导的候选,最终使用完整的训练集进行微调。我们通过在PASCAL VOC 2012数据集上搜索有效交易准确性和计算成本的模型来评估SuperNAS。SuperNAS可以快速找到具有竞争力的设计,例如,只需0.5个GPU天就可以发现DeepLabV3+变体,该变体可以将flop和参数分别减少10%和20%,误差增加不到3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信