Self-triggered controllers, resource sharing, and hard guarantees

A. Aminifar
{"title":"Self-triggered controllers, resource sharing, and hard guarantees","authors":"A. Aminifar","doi":"10.1109/EBCCSP.2016.7605266","DOIUrl":null,"url":null,"abstract":"Today, many control applications in embedded and cyber-physical systems are implemented on shared platforms, alongside other hard real-time or safety-critical applications. Having the resource shared among several applications, to provide hard guarantees, it is required to identify the amount of resource needed for each application. This is rather straightforward when the platform is shared among periodic control and periodic real-time applications. In the case of event-triggered and self-triggered controllers, however, the execution patterns and, in turn, the resource usage are not clear. Therefore, a major implementation challenge, when the platform is shared with self-triggered controllers, is to provide hard and efficient stability and schedulability guarantees for other applications. In this paper, we identify certain execution patterns for self-triggered controllers, using which we are able to provide hard and efficient stability guarantees for periodic control applications.","PeriodicalId":411767,"journal":{"name":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP.2016.7605266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Today, many control applications in embedded and cyber-physical systems are implemented on shared platforms, alongside other hard real-time or safety-critical applications. Having the resource shared among several applications, to provide hard guarantees, it is required to identify the amount of resource needed for each application. This is rather straightforward when the platform is shared among periodic control and periodic real-time applications. In the case of event-triggered and self-triggered controllers, however, the execution patterns and, in turn, the resource usage are not clear. Therefore, a major implementation challenge, when the platform is shared with self-triggered controllers, is to provide hard and efficient stability and schedulability guarantees for other applications. In this paper, we identify certain execution patterns for self-triggered controllers, using which we are able to provide hard and efficient stability guarantees for periodic control applications.
自触发控制器、资源共享和硬保证
如今,嵌入式和网络物理系统中的许多控制应用都是在共享平台上实现的,以及其他硬实时或安全关键应用。要在多个应用程序之间共享资源,以提供可靠的保证,就需要确定每个应用程序所需的资源量。当平台在周期控制和周期实时应用程序之间共享时,这是相当简单的。但是,在事件触发和自触发控制器的情况下,执行模式以及资源使用情况并不清楚。因此,当平台与自触发控制器共享时,一个主要的实现挑战是为其他应用程序提供可靠而有效的稳定性和可调度性保证。在本文中,我们确定了自触发控制器的某些执行模式,使用它我们能够为周期控制应用提供可靠和有效的稳定性保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信