Lightweight Message Authentication for Constrained Devices

E. Dubrova, M. Näslund, G. Selander, Fredrik Lindqvist
{"title":"Lightweight Message Authentication for Constrained Devices","authors":"E. Dubrova, M. Näslund, G. Selander, Fredrik Lindqvist","doi":"10.1145/3212480.3212482","DOIUrl":null,"url":null,"abstract":"Message Authentication Codes (MACs) used in today's wireless communication standards may not be able to satisfy resource limitations of simpler 5G radio types and use cases such as machine type communications. As a possible solution, we present a lightweight message authentication scheme based on the cyclic redundancy check (CRC). It has been previously shown that a CRC with an irreducible generator polynomial as the key is an ϵ-almost XOR-universal (AXU) hash function with ϵ = (m + n)/2n-1, where m is the message size and n is the CRC size. While the computation of n-bit CRCs can be efficiently implemented in hardware using linear feedback shift registers, generating random degree-n irreducible polynomials is computationally expensive for large n. We propose using a product of k irreducible polynomials whose degrees sum up to n as a generator polynomial for an n-bit CRC and show that the resulting hash functions are ϵ-AXU with ϵ = (m + n)k/2n-k. The presented message authentication scheme can be seen as providing a trade-off between security and implementation efficiency.","PeriodicalId":267134,"journal":{"name":"Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212480.3212482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Message Authentication Codes (MACs) used in today's wireless communication standards may not be able to satisfy resource limitations of simpler 5G radio types and use cases such as machine type communications. As a possible solution, we present a lightweight message authentication scheme based on the cyclic redundancy check (CRC). It has been previously shown that a CRC with an irreducible generator polynomial as the key is an ϵ-almost XOR-universal (AXU) hash function with ϵ = (m + n)/2n-1, where m is the message size and n is the CRC size. While the computation of n-bit CRCs can be efficiently implemented in hardware using linear feedback shift registers, generating random degree-n irreducible polynomials is computationally expensive for large n. We propose using a product of k irreducible polynomials whose degrees sum up to n as a generator polynomial for an n-bit CRC and show that the resulting hash functions are ϵ-AXU with ϵ = (m + n)k/2n-k. The presented message authentication scheme can be seen as providing a trade-off between security and implementation efficiency.
受约束设备的轻量级消息身份验证
当前无线通信标准中使用的消息认证码(mac)可能无法满足更简单的5G无线电类型和用例(如机器类型通信)的资源限制。作为一种可能的解决方案,我们提出了一种基于循环冗余校验(CRC)的轻量级消息认证方案。以前已经证明,以不可约的生成器多项式作为密钥的CRC是一个ϵ-almost xor泛型(AXU)哈希函数,其λ = (m + n)/2n-1,其中m是消息大小,n是CRC大小。虽然n位CRC的计算可以使用线性反馈移位寄存器在硬件中有效地实现,但对于大n,生成随机的n次不可约多项式在计算上是昂贵的。我们建议使用k个不可约多项式的乘积,其次数之和为n作为n位CRC的生成器多项式,并表明所得到的哈希函数为ϵ-AXU,其λ = (m + n)k/2n-k。所提出的消息身份验证方案可以看作是在安全性和实现效率之间进行权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信