{"title":"APPLICATION OF HOLLOW CATHODE GLOW DISCHARGE IN THE PROCESSES OF THING METAL FILMS DEPOSITION","authors":"M. Bolotov","doi":"10.30525/978-9934-588-47-1.1","DOIUrl":null,"url":null,"abstract":"INTRODUCTION Thin metal films are widely used in various fields of modern industry. However, the most widespread use thin-film elements have got in the different electronics technological processes, for instance, in manufacturing of semiconductor devices, in laser and nonlinear optics to provide polarizing, illuminating or mirror properties to optical elements etc. Currently there are two main groups of methods for deposition of thin metal film coatings: chemical vapor deposition (CVD) and physical vapor deposition (PVD) which differentiate from each other with the process of obtaining a film-forming flux of atoms, ions or molecules. Nowadays, much attention is paid to physical vapor deposition (PVD) methods in which the atoms and metal molecules required for the synthesis of coatings are obtained by means of processes involving the evaporation of a target 1 . The main representatives of this group of methods are the sputtering by the cathode’s spots of vacuum arc discharge, electron and ion beams, thermal vacuum evaporation, magnetron sputtering and so on. The experience of industrial application of such technologies, made it possible to identify along with the advantages their main cons, mainly due to the low deposition rate, poor coating uniformity, poor adhesion to the substrate surface, limited processing surfaces, and the like. Recently, a gas-discharge plasma of abnormal glow discharge with a cold cathode in crossed electric and magnetic fields at pressures below 1 Pa for generating of necessary fluxes of atoms and molecules in order to obtain metal film layers is been used. The results of studies performed","PeriodicalId":143786,"journal":{"name":"MODERN ENGINEERING RESEARCH: TOPICAL PROBLEMS, CHALLENGES AND MODERNITY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MODERN ENGINEERING RESEARCH: TOPICAL PROBLEMS, CHALLENGES AND MODERNITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30525/978-9934-588-47-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
INTRODUCTION Thin metal films are widely used in various fields of modern industry. However, the most widespread use thin-film elements have got in the different electronics technological processes, for instance, in manufacturing of semiconductor devices, in laser and nonlinear optics to provide polarizing, illuminating or mirror properties to optical elements etc. Currently there are two main groups of methods for deposition of thin metal film coatings: chemical vapor deposition (CVD) and physical vapor deposition (PVD) which differentiate from each other with the process of obtaining a film-forming flux of atoms, ions or molecules. Nowadays, much attention is paid to physical vapor deposition (PVD) methods in which the atoms and metal molecules required for the synthesis of coatings are obtained by means of processes involving the evaporation of a target 1 . The main representatives of this group of methods are the sputtering by the cathode’s spots of vacuum arc discharge, electron and ion beams, thermal vacuum evaporation, magnetron sputtering and so on. The experience of industrial application of such technologies, made it possible to identify along with the advantages their main cons, mainly due to the low deposition rate, poor coating uniformity, poor adhesion to the substrate surface, limited processing surfaces, and the like. Recently, a gas-discharge plasma of abnormal glow discharge with a cold cathode in crossed electric and magnetic fields at pressures below 1 Pa for generating of necessary fluxes of atoms and molecules in order to obtain metal film layers is been used. The results of studies performed