Hierarchical modular reinforcement learning method and knowledge acquisition of state-action rule for multi-target problem

T. Ichimura, Daisuke Igaue
{"title":"Hierarchical modular reinforcement learning method and knowledge acquisition of state-action rule for multi-target problem","authors":"T. Ichimura, Daisuke Igaue","doi":"10.1109/IWCIA.2013.6624799","DOIUrl":null,"url":null,"abstract":"Hierarchical Modular Reinforcement Learning (HMRL), consists of 2 layered learning where Profit Sharing works to plan a prey position in the higher layer and Q-learning method trains the state-actions to the target in the lower layer. In this paper, we expanded HMRL to multi-target problem to take the distance between targets to the consideration. The function, called `AT field', can estimate the interests for an agent according to the distance between 2 agents and the advantage/disadvantage of the other agent. Moreover, the knowledge related to state-action rules is extracted by C4.5. The action under the situation is decided by using the acquired knowledge. To verify the effectiveness of proposed method, some experimental results are reported.","PeriodicalId":257474,"journal":{"name":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2013.6624799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hierarchical Modular Reinforcement Learning (HMRL), consists of 2 layered learning where Profit Sharing works to plan a prey position in the higher layer and Q-learning method trains the state-actions to the target in the lower layer. In this paper, we expanded HMRL to multi-target problem to take the distance between targets to the consideration. The function, called `AT field', can estimate the interests for an agent according to the distance between 2 agents and the advantage/disadvantage of the other agent. Moreover, the knowledge related to state-action rules is extracted by C4.5. The action under the situation is decided by using the acquired knowledge. To verify the effectiveness of proposed method, some experimental results are reported.
多目标问题状态-行为规则的分层模块化强化学习方法及知识获取
分层模块化强化学习(HMRL)由两层学习组成,其中利润分享方法在上层计划猎物位置,q学习方法在下层训练状态动作到目标。本文将HMRL扩展到多目标问题,考虑目标之间的距离。这个函数被称为“AT域”,它可以根据两个代理之间的距离和另一个代理的优势/劣势来估计一个代理的兴趣。此外,通过C4.5提取状态-行为规则相关知识。在这种情况下的行动是利用所获得的知识来决定的。为了验证该方法的有效性,给出了一些实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信