Efficient numerical solution of the brain glioblastomas proliferation-invasion model

Sandra Indhavani García Mendoza, Julio César Pérez Sansalvador, G. R. Gómez
{"title":"Efficient numerical solution of the brain glioblastomas proliferation-invasion model","authors":"Sandra Indhavani García Mendoza, Julio César Pérez Sansalvador, G. R. Gómez","doi":"10.1109/ENC56672.2022.9882922","DOIUrl":null,"url":null,"abstract":"Brain Glioblastomas are considered one of the most aggressive brain tumours due to their rapid proliferation and infiltration of the brain tissue. Therefore, the efficient solution of mathematical models of this disease may improve understanding of its dynamics. In this work, we numerically solve the Partial Differential Equation modelling the proliferation-invasion of brain glioblastomas. We apply the Crank-Nicolson method to obtain the associated algebraic system of equations of the model and compare computation times for LU-decomposition, Gauss-Seidel, and Conjugate Gradient methods. These results suggest that solution times may be reduced by exploiting the underlying structure of the derived system of algebraic equations.","PeriodicalId":145622,"journal":{"name":"2022 IEEE Mexican International Conference on Computer Science (ENC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Mexican International Conference on Computer Science (ENC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENC56672.2022.9882922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain Glioblastomas are considered one of the most aggressive brain tumours due to their rapid proliferation and infiltration of the brain tissue. Therefore, the efficient solution of mathematical models of this disease may improve understanding of its dynamics. In this work, we numerically solve the Partial Differential Equation modelling the proliferation-invasion of brain glioblastomas. We apply the Crank-Nicolson method to obtain the associated algebraic system of equations of the model and compare computation times for LU-decomposition, Gauss-Seidel, and Conjugate Gradient methods. These results suggest that solution times may be reduced by exploiting the underlying structure of the derived system of algebraic equations.
脑胶质母细胞瘤增殖-侵袭模型的高效数值求解
脑胶质母细胞瘤被认为是最具侵袭性的脑肿瘤之一,因为它们的快速增殖和浸润脑组织。因此,有效地求解这种疾病的数学模型可以提高对其动力学的理解。在这项工作中,我们对模拟脑胶质母细胞瘤增殖-侵袭的偏微分方程进行了数值求解。我们应用Crank-Nicolson方法获得了模型的相关代数方程组,并比较了lu分解、Gauss-Seidel和共轭梯度方法的计算时间。这些结果表明,求解时间可以通过利用导出的代数方程组的底层结构来减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信