Compressive data aggregation on mobile wireless sensor networks for sensing in bike races

Wei-Qing Du, J. Gorce, T. Risset, M. Lauzier, A. Fraboulet
{"title":"Compressive data aggregation on mobile wireless sensor networks for sensing in bike races","authors":"Wei-Qing Du, J. Gorce, T. Risset, M. Lauzier, A. Fraboulet","doi":"10.1109/EUSIPCO.2016.7760208","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient approach for collecting data in mobile wireless sensor networks which is specifically designed to gather real-time information of bikers in a bike race. The approach employs the recent HIKOB sensors for tracking the GPS position of each bike and the problem herein addressed is to transmit this information to a collector for visualization or other processing. Our approach exploits the inherent correlation between biker motions and aggregates GPS data at sensors using compressive sensing (CS) techniques. We enforce, instead of the standard signal sparsity, a spatial sparsity prior on biker motion because of the grouping behavior (peloton) in bike races. The spatial sparsity is modeled by a graphical model and the CS-based data aggregation problem is solved using linear programming. Our approach, integrated in a multi-round opportunistic routing protocol, is validated on data generated by a bike race simulator using trajectories of motorbikes obtained from a real race, the Paris-Tours 2013.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an efficient approach for collecting data in mobile wireless sensor networks which is specifically designed to gather real-time information of bikers in a bike race. The approach employs the recent HIKOB sensors for tracking the GPS position of each bike and the problem herein addressed is to transmit this information to a collector for visualization or other processing. Our approach exploits the inherent correlation between biker motions and aggregates GPS data at sensors using compressive sensing (CS) techniques. We enforce, instead of the standard signal sparsity, a spatial sparsity prior on biker motion because of the grouping behavior (peloton) in bike races. The spatial sparsity is modeled by a graphical model and the CS-based data aggregation problem is solved using linear programming. Our approach, integrated in a multi-round opportunistic routing protocol, is validated on data generated by a bike race simulator using trajectories of motorbikes obtained from a real race, the Paris-Tours 2013.
面向自行车比赛传感的移动无线传感器网络压缩数据聚合
本文提出了一种有效的移动无线传感器网络数据采集方法,该方法是专门为收集自行车比赛中骑行者的实时信息而设计的。该方法采用最新的HIKOB传感器来跟踪每辆自行车的GPS位置,这里解决的问题是将这些信息传输到收集器进行可视化或其他处理。我们的方法利用骑车者运动和使用压缩感知(CS)技术的传感器聚合GPS数据之间的内在相关性。由于自行车比赛中的分组行为(peloton),我们在自行车运动之前强制执行空间稀疏性,而不是标准的信号稀疏性。空间稀疏性采用图形化模型建模,数据聚合问题采用线性规划解决。我们的方法集成在多轮机会路由协议中,并在自行车比赛模拟器生成的数据上进行验证,该数据使用了从2013年巴黎-环法自行车赛中获得的摩托车轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信