A Variable Step Size Multi-Block Backward Differentiation Formula for Solving Stiff Initial Value Problem of Ordinary Differential Equations

A. Sagir, M. Abdullahi
{"title":"A Variable Step Size Multi-Block Backward Differentiation Formula for Solving Stiff Initial Value Problem of Ordinary Differential Equations","authors":"A. Sagir, M. Abdullahi","doi":"10.28924/ada/stat.3.4","DOIUrl":null,"url":null,"abstract":"A variable step size multi-block backward differentiation formula for solving stiff initial value problems of ordinary differential equations with a variable step size strategy was derived. The proposed method (VSSMBBDF) computes two approximate solution values at a time per integration step. The stability properties are achieved by varying the step size ratio in the formula to generate more zero stable schemes. The proposed method is also found to be an A-Stable scheme across different choices of the step size. The method is capable of solving stiff IVPs of ODEs. Approximates result from the system of stiff ODE problems considered are found to favorably validate the performance of the new method in terms of accuracy of the scale error and less executional time in respect to the two methods compared in the study. Hence, the proposed method can be an alternative solver for stiff IVPs of ODEs.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A variable step size multi-block backward differentiation formula for solving stiff initial value problems of ordinary differential equations with a variable step size strategy was derived. The proposed method (VSSMBBDF) computes two approximate solution values at a time per integration step. The stability properties are achieved by varying the step size ratio in the formula to generate more zero stable schemes. The proposed method is also found to be an A-Stable scheme across different choices of the step size. The method is capable of solving stiff IVPs of ODEs. Approximates result from the system of stiff ODE problems considered are found to favorably validate the performance of the new method in terms of accuracy of the scale error and less executional time in respect to the two methods compared in the study. Hence, the proposed method can be an alternative solver for stiff IVPs of ODEs.
求解常微分方程刚性初值问题的变步长多分块反微分公式
导出了求解变步长常微分方程刚性初值问题的变步长多分块反微分公式。提出的方法(VSSMBBDF)在每个积分步骤一次计算两个近似解值。通过改变公式中的步长比来获得稳定性,从而产生更多的零稳定格式。该方法在不同步长选择下都是a -稳定的。该方法能够求解ode的刚性ivp。从所考虑的刚性ODE问题系统的近似结果来看,与研究中的两种方法相比,在尺度误差的准确性和较少的执行时间方面,较好地验证了新方法的性能。因此,所提出的方法可以作为求解ode的刚性ivp的一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信