A comparative study of in-sensor processing vs. raw data transmission using ZigBee, BLE and Wi-Fi for data intensive monitoring applications

K. Shahzad, B. Oelmann
{"title":"A comparative study of in-sensor processing vs. raw data transmission using ZigBee, BLE and Wi-Fi for data intensive monitoring applications","authors":"K. Shahzad, B. Oelmann","doi":"10.1109/ISWCS.2014.6933409","DOIUrl":null,"url":null,"abstract":"Wireless sensor nodes, as typically realized using IEEE 802.15.4 compatible low-power radio transceivers that offer limited throughput, are generally applicable to low-data rate intermittent monitoring applications. In order to realize high sample rate monitoring applications, it requires either transmitting raw data using a high-throughput radio transceiver or performing computation within the sensor node and then transmitting a small amount of information. In relation to a energy constrained wireless sensing node, a quantitative evaluation of raw data transmission using different short range wireless technologies and in-sensor processing is conducted in this paper. The results, associated with the energy consumption of two data intensive monitoring applications, suggest that in-sensor processing resulting in a small amount of data to be transmitted consumes less energy as compared to that of raw data transmission, even under ideal channel conditions.","PeriodicalId":431852,"journal":{"name":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2014.6933409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Wireless sensor nodes, as typically realized using IEEE 802.15.4 compatible low-power radio transceivers that offer limited throughput, are generally applicable to low-data rate intermittent monitoring applications. In order to realize high sample rate monitoring applications, it requires either transmitting raw data using a high-throughput radio transceiver or performing computation within the sensor node and then transmitting a small amount of information. In relation to a energy constrained wireless sensing node, a quantitative evaluation of raw data transmission using different short range wireless technologies and in-sensor processing is conducted in this paper. The results, associated with the energy consumption of two data intensive monitoring applications, suggest that in-sensor processing resulting in a small amount of data to be transmitted consumes less energy as compared to that of raw data transmission, even under ideal channel conditions.
传感器内处理与使用ZigBee、BLE和Wi-Fi进行数据密集型监控应用的原始数据传输的比较研究
无线传感器节点通常使用IEEE 802.15.4兼容的低功率无线电收发器实现,提供有限的吞吐量,通常适用于低数据速率间歇监测应用。为了实现高采样率的监控应用,要么需要使用高通量无线电收发器传输原始数据,要么需要在传感器节点内进行计算,然后传输少量信息。针对能量受限的无线传感节点,采用不同的短距离无线技术和传感器内处理对原始数据传输进行了定量评估。与两个数据密集型监测应用的能耗相关的结果表明,即使在理想的信道条件下,与原始数据传输相比,导致少量数据传输的传感器内处理消耗的能量更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信