Validation of Google Earth-based DEM using leveling data

A. Abdalla, Ahmed Elzein
{"title":"Validation of Google Earth-based DEM using leveling data","authors":"A. Abdalla, Ahmed Elzein","doi":"10.1109/ICCCEEE49695.2021.9429604","DOIUrl":null,"url":null,"abstract":"We generate a digital elevation model (DEM) from online open-source Google Earth imagery. The DEM generation steps from Google Earth are based on digitizing the track paths over the selected area. Heights are then updated over the digitized paths and interpolated to create the final DEM quality of the extracted DEM is assessed utilizing vertical accuracy. We use local leveling data to validate the newly-extracted DEM. The comparison between the leveling and DEM-based heights shows an offset of 2.8 m due to the systematic errors, the rootmean-square error (RMSE) of the differences is estimated to ± 5.47 m. We employ a 4-parameter fitting model to eliminate the systematic errors, which improves the RMSE to ± 4.63 m after removing the errors. The fitting model is also used to reform and refine the error distribution between the data sets of comparisons. Numerical investigations and analyses are included and illustrated.","PeriodicalId":359802,"journal":{"name":"2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCEEE49695.2021.9429604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generate a digital elevation model (DEM) from online open-source Google Earth imagery. The DEM generation steps from Google Earth are based on digitizing the track paths over the selected area. Heights are then updated over the digitized paths and interpolated to create the final DEM quality of the extracted DEM is assessed utilizing vertical accuracy. We use local leveling data to validate the newly-extracted DEM. The comparison between the leveling and DEM-based heights shows an offset of 2.8 m due to the systematic errors, the rootmean-square error (RMSE) of the differences is estimated to ± 5.47 m. We employ a 4-parameter fitting model to eliminate the systematic errors, which improves the RMSE to ± 4.63 m after removing the errors. The fitting model is also used to reform and refine the error distribution between the data sets of comparisons. Numerical investigations and analyses are included and illustrated.
利用水准数据验证Google地基DEM
我们从在线开放源代码谷歌地球图像生成数字高程模型(DEM)。谷歌Earth的DEM生成步骤是基于对选定区域的轨道路径进行数字化。然后在数字化路径上更新高度并进行插值以创建最终的DEM,提取的DEM的质量利用垂直精度进行评估。我们使用当地的水准数据来验证新提取的DEM。由于系统误差,平准与dem的高度差为2.8 m,其均方根误差(RMSE)估计为±5.47 m。采用4参数拟合模型消除系统误差,消除误差后RMSE提高到±4.63 m。拟合模型还用于改进和细化比较数据集之间的误差分布。数值调查和分析包括和说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信