Yan Ji, Ruize Wang, Kalle Ngo, E. Dubrova, Linus Backlund
{"title":"A Side-Channel Attack on a Hardware Implementation of CRYSTALS-Kyber","authors":"Yan Ji, Ruize Wang, Kalle Ngo, E. Dubrova, Linus Backlund","doi":"10.1109/ETS56758.2023.10174000","DOIUrl":null,"url":null,"abstract":"CRYSTALS-Kyber has been recently selected by the NIST as a new public-key encryption and key-establishment algorithm to be standardized. This makes it important to assess how well CRYSTALS-Kyber implementations withstand side-channel attacks. Software implementations of CRYSTALS-Kyber have already been analyzed and the discovered vulnerabilities were patched in the subsequently released versions. In this paper, we present a profiling side-channel attack on a hardware implementation of CRYSTALS-Kyber. Since hardware implementations carry out computations in parallel, they are typically more difficult to break than their software counterparts. We demonstrate a successful message (session key) recovery attack on a Xilinx Artix-7 FPGA implementation of CRYSTALS-Kyber by deep learning-based power analysis. Our results indicate that currently available hardware implementations of CRYSTALS-Kyber need better protection against side-channel attacks.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
CRYSTALS-Kyber has been recently selected by the NIST as a new public-key encryption and key-establishment algorithm to be standardized. This makes it important to assess how well CRYSTALS-Kyber implementations withstand side-channel attacks. Software implementations of CRYSTALS-Kyber have already been analyzed and the discovered vulnerabilities were patched in the subsequently released versions. In this paper, we present a profiling side-channel attack on a hardware implementation of CRYSTALS-Kyber. Since hardware implementations carry out computations in parallel, they are typically more difficult to break than their software counterparts. We demonstrate a successful message (session key) recovery attack on a Xilinx Artix-7 FPGA implementation of CRYSTALS-Kyber by deep learning-based power analysis. Our results indicate that currently available hardware implementations of CRYSTALS-Kyber need better protection against side-channel attacks.