A Local Structure-aware 3D Hand Pose Estimation Method for Egocentric Videos

Son T. Tran, Van-Hung Le, Van-Nam Hoang, Khoat Than, Thanh-Hai Tran, Hai Vu, Thi-Lan Le
{"title":"A Local Structure-aware 3D Hand Pose Estimation Method for Egocentric Videos","authors":"Son T. Tran, Van-Hung Le, Van-Nam Hoang, Khoat Than, Thanh-Hai Tran, Hai Vu, Thi-Lan Le","doi":"10.1109/ICCE55644.2022.9852069","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to estimate 3D hand pose from first-person videos. First, in order to remove the effect of background, we build a hand detection module based on YOLO network then apply this module in RGB images. Then, depth information of detected hand regions is employed to construct point clouds. Finally, a local structure aware model named SplitPointnet which consists of six PointNet++ models is proposed to simultaneously estimate joints in five fingers and the thumb region. Experimental results obtained on a large dataset of egocentric vision FPHAB have shown that the proposed method results better hand pose estimations than the state-of-the-art methods with the average error is 66.26 mm.","PeriodicalId":388547,"journal":{"name":"2022 IEEE Ninth International Conference on Communications and Electronics (ICCE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Ninth International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE55644.2022.9852069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a method to estimate 3D hand pose from first-person videos. First, in order to remove the effect of background, we build a hand detection module based on YOLO network then apply this module in RGB images. Then, depth information of detected hand regions is employed to construct point clouds. Finally, a local structure aware model named SplitPointnet which consists of six PointNet++ models is proposed to simultaneously estimate joints in five fingers and the thumb region. Experimental results obtained on a large dataset of egocentric vision FPHAB have shown that the proposed method results better hand pose estimations than the state-of-the-art methods with the average error is 66.26 mm.
一种局部结构感知的自中心视频三维手姿估计方法
在本文中,我们提出了一种从第一人称视频中估计三维手部姿势的方法。首先,为了消除背景的影响,我们构建了一个基于YOLO网络的手部检测模块,并将该模块应用于RGB图像。然后,利用检测到的手部区域深度信息构建点云;最后,提出了一个由6个PointNet++模型组成的局部结构感知模型SplitPointnet,用于同时估计五指和拇指区域的关节。在大型自中心视觉FPHAB数据集上的实验结果表明,该方法的手姿估计效果优于现有方法,平均误差为66.26 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信