Optimizing Cloud Caches For Free: A Case for Autonomic Systems with a Serverless Computing Approach

Xavier Andrade, J. Cedeño, Edwin F. Boza, Harold Aragon, Cristina L. Abad, Jorge R. Murillo
{"title":"Optimizing Cloud Caches For Free: A Case for Autonomic Systems with a Serverless Computing Approach","authors":"Xavier Andrade, J. Cedeño, Edwin F. Boza, Harold Aragon, Cristina L. Abad, Jorge R. Murillo","doi":"10.1109/FAS-W.2019.00044","DOIUrl":null,"url":null,"abstract":"While significant advances have been made towards realizing self-tuning cloud caches, existing products still require manual tuning. These systems are built to serve requests extremely fast and anything that consumes resources not directly related to the request-serving control path is avoided. We show that severless computing platforms can be leveraged to solve complex optimization problems that arise during self-tuning loops, and thus can be used to optimize resources in cloud caches, for free. To show that our approach is feasible and useful, we implement SPREDS (Self-Partitioning REDis), a modified version of Redis that optimizes memory management in the multi-instance Redis scenario. Through this case study and cost analysis, we make a case for implementing the controller of autonomic systems using a serverless computing approach.","PeriodicalId":368308,"journal":{"name":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2019.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

While significant advances have been made towards realizing self-tuning cloud caches, existing products still require manual tuning. These systems are built to serve requests extremely fast and anything that consumes resources not directly related to the request-serving control path is avoided. We show that severless computing platforms can be leveraged to solve complex optimization problems that arise during self-tuning loops, and thus can be used to optimize resources in cloud caches, for free. To show that our approach is feasible and useful, we implement SPREDS (Self-Partitioning REDis), a modified version of Redis that optimizes memory management in the multi-instance Redis scenario. Through this case study and cost analysis, we make a case for implementing the controller of autonomic systems using a serverless computing approach.
免费优化云缓存:采用无服务器计算方法的自治系统案例
虽然在实现自调优云缓存方面已经取得了重大进展,但现有产品仍然需要手动调优。这些系统被构建为以极快的速度处理请求,并且避免了任何消耗与请求服务控制路径不直接相关的资源的东西。我们展示了可以利用无服务器计算平台来解决自调优循环期间出现的复杂优化问题,因此可以免费用于优化云缓存中的资源。为了证明我们的方法是可行和有用的,我们实现了SPREDS(自分区REDis),这是REDis的一个修改版本,可以优化多实例REDis场景中的内存管理。通过本案例研究和成本分析,我们提出了使用无服务器计算方法实现自主系统控制器的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信