Performance evaluation of Modified Genetic Algorithm over Genetic Algorithm implementation on fault diagnosis of Cascaded Multilevel Inverter

T. G. Manjunath, A. Kusagur
{"title":"Performance evaluation of Modified Genetic Algorithm over Genetic Algorithm implementation on fault diagnosis of Cascaded Multilevel Inverter","authors":"T. G. Manjunath, A. Kusagur","doi":"10.1109/CATCON.2015.7449507","DOIUrl":null,"url":null,"abstract":"Fault diagnosis on Multilevel Inverter (MLI) has been a subject of research for about a decade. This paper is an attempt to deliver a performance analysis of Genetic Algorithm (GA) and the Modified Genetic Algorithm (MGA) working to optimize Artificial Neural Network (ANN) that trains itself on the fault detection and reconfiguration of the Cascaded Multilevel Inverters (CMLI). The open circuit (OC) faults occurring in the CMLI is considered for this comparative analysis of the performance. The parameters that are taken for the performance evaluation are elapsed time of recovery, Mean Square Error (MSE) and the computational budgets of ANN. Matlab/Simulink is used to develop the CMLI and M-files are used to develop the ANN and optimization algorithms like GA and MGA. The results are obtained and tabulated and performance evaluation carried out.","PeriodicalId":385907,"journal":{"name":"2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATCON.2015.7449507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fault diagnosis on Multilevel Inverter (MLI) has been a subject of research for about a decade. This paper is an attempt to deliver a performance analysis of Genetic Algorithm (GA) and the Modified Genetic Algorithm (MGA) working to optimize Artificial Neural Network (ANN) that trains itself on the fault detection and reconfiguration of the Cascaded Multilevel Inverters (CMLI). The open circuit (OC) faults occurring in the CMLI is considered for this comparative analysis of the performance. The parameters that are taken for the performance evaluation are elapsed time of recovery, Mean Square Error (MSE) and the computational budgets of ANN. Matlab/Simulink is used to develop the CMLI and M-files are used to develop the ANN and optimization algorithms like GA and MGA. The results are obtained and tabulated and performance evaluation carried out.
改进遗传算法与遗传算法在级联多电平逆变器故障诊断中的性能比较
多电平逆变器(MLI)的故障诊断已经成为近十年来的研究课题。本文试图提供遗传算法(GA)和改进遗传算法(MGA)的性能分析,以优化人工神经网络(ANN),该网络在级联多电平逆变器(CMLI)的故障检测和重构上进行自我训练。在CMLI中发生的开路(OC)故障被考虑用于性能的比较分析。用于性能评估的参数是恢复的运行时间、均方误差(MSE)和人工神经网络的计算预算。使用Matlab/Simulink开发CMLI,使用M-files开发人工神经网络和GA、MGA等优化算法。结果得到并制成表格,并进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信