Text line extraction from handwritten document pages using spiral run length smearing algorithm

Samir Malakar, S. Halder, R. Sarkar, N. Das, S. Basu, M. Nasipuri
{"title":"Text line extraction from handwritten document pages using spiral run length smearing algorithm","authors":"Samir Malakar, S. Halder, R. Sarkar, N. Das, S. Basu, M. Nasipuri","doi":"10.1109/CODIS.2012.6422278","DOIUrl":null,"url":null,"abstract":"Extraction of text lines from document images is one of the important steps in the process of an Optical Character Recognition (OCR) system. In case of handwritten document images, presence of skewed, touching or overlapping text line(s) makes this process a real challenge to the researcher. In the present work, a new text line extraction technique based on Spiral Run Length Smearing Algorithm (SRLSA) is reported. Firstly, digitized document image is partitioned into a number of vertical fragments of equal width. Then all the text line segments present in these fragments are identified by applying SRLSA. Finally, the neighboring text line segments are analyzed and merged (if necessary) to place them inside the same text line boundary in which they actually belong. For experimental purpose, the technique is tested on CMATERdb1.1.1 and CMATERdb1.2.1 databases. The present technique extracts 87.09% and 89.35% text lines successfully from the said databases respectively.","PeriodicalId":274831,"journal":{"name":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODIS.2012.6422278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Extraction of text lines from document images is one of the important steps in the process of an Optical Character Recognition (OCR) system. In case of handwritten document images, presence of skewed, touching or overlapping text line(s) makes this process a real challenge to the researcher. In the present work, a new text line extraction technique based on Spiral Run Length Smearing Algorithm (SRLSA) is reported. Firstly, digitized document image is partitioned into a number of vertical fragments of equal width. Then all the text line segments present in these fragments are identified by applying SRLSA. Finally, the neighboring text line segments are analyzed and merged (if necessary) to place them inside the same text line boundary in which they actually belong. For experimental purpose, the technique is tested on CMATERdb1.1.1 and CMATERdb1.2.1 databases. The present technique extracts 87.09% and 89.35% text lines successfully from the said databases respectively.
使用螺旋运行长度涂抹算法从手写文档页面中提取文本行
从文档图像中提取文本行是光学字符识别(OCR)系统的重要步骤之一。在手写文档图像的情况下,存在倾斜、触摸或重叠的文本行,这对研究人员来说是一个真正的挑战。本文提出了一种基于螺旋运行长度涂抹算法(SRLSA)的文本行提取方法。首先,将数字化文档图像分割为若干等宽的垂直碎片。然后应用SRLSA识别这些片段中存在的所有文本行段。最后,对相邻的文本线段进行分析和合并(如果需要的话),将它们置于它们实际所属的同一文本线段边界内。出于实验目的,在CMATERdb1.1.1和CMATERdb1.2.1数据库上对该技术进行了测试。本技术分别成功地从上述数据库中提取了87.09%和89.35%的文本行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信