New climate-control units for more energy-efficient Electric Vehicles: The innovative Three-Fluids Combined Membrane Contactor

C. Isetti, E. Nannei, S. Lazzari, S. Hariri, O. Iliev, T. Prill
{"title":"New climate-control units for more energy-efficient Electric Vehicles: The innovative Three-Fluids Combined Membrane Contactor","authors":"C. Isetti, E. Nannei, S. Lazzari, S. Hariri, O. Iliev, T. Prill","doi":"10.1109/EVER.2017.7935951","DOIUrl":null,"url":null,"abstract":"This paper describes the work in progress in the XERIC project, funded within the Horizon 2020 EU program, which is aimed at building and testing a new climate-control system. The latter integrates a vapour compression cycle with a liquid desiccant cycle to increase Battery Electric Vehicles autonomy thanks to its increased energy efficiency. The modeling activity carried out on the design of an innovative Three-Fluids Combined Membrane Contactor (3F-CMC) and on the development of a lumped-parameters model to predict the 3F-CMC performance is described. The physical assumptions considered in the lumped-parameters model are presented. Results of 2D and 3D numerical heat and mass transfer simulations are used to get input data for the lumped code. The effect of air spacer design on the overall component performance is presented.","PeriodicalId":395329,"journal":{"name":"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2017.7935951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes the work in progress in the XERIC project, funded within the Horizon 2020 EU program, which is aimed at building and testing a new climate-control system. The latter integrates a vapour compression cycle with a liquid desiccant cycle to increase Battery Electric Vehicles autonomy thanks to its increased energy efficiency. The modeling activity carried out on the design of an innovative Three-Fluids Combined Membrane Contactor (3F-CMC) and on the development of a lumped-parameters model to predict the 3F-CMC performance is described. The physical assumptions considered in the lumped-parameters model are presented. Results of 2D and 3D numerical heat and mass transfer simulations are used to get input data for the lumped code. The effect of air spacer design on the overall component performance is presented.
用于更节能电动汽车的新型气候控制单元:创新的三流体组合膜接触器
本文描述了XERIC项目正在进行的工作,该项目由欧盟地平线2020计划资助,旨在建立和测试一种新的气候控制系统。后者集成了蒸汽压缩循环和液体干燥剂循环,由于其提高了能源效率,从而提高了电池电动汽车的自主性。介绍了一种新型三流体组合膜接触器(3F-CMC)的设计建模活动,以及用于预测3F-CMC性能的集总参数模型的开发。给出了集总参数模型所考虑的物理假设。利用二维和三维数值传热传质模拟结果得到集总码的输入数据。介绍了空气垫片设计对部件整体性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信