Industry Interdependency Dynamics in a Network Context

Ya Qian, W. Härdle, C. Chen
{"title":"Industry Interdependency Dynamics in a Network Context","authors":"Ya Qian, W. Härdle, C. Chen","doi":"10.2139/ssrn.2961703","DOIUrl":null,"url":null,"abstract":"This paper contributes to model the industry interconnecting structure in a network context. General predictive model (Rapach et al. 2016) is extended to quantile LASSO regression so as to incorporate tail risks in the construction of industry interdependency networks. Empirical results show a denser network with heterogeneous central industries in tail cases. Network dynamics demonstrate the variety of interdependency across time. Lower tail interdependency structure gives the most accurate out-of-sample forecast of portfolio returns and network centrality-based trading strategies seem to outperform market portfolios, leading to the possible ’too central to fail’ argument.","PeriodicalId":166531,"journal":{"name":"PSN: Interdependence (Topic)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Interdependence (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2961703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper contributes to model the industry interconnecting structure in a network context. General predictive model (Rapach et al. 2016) is extended to quantile LASSO regression so as to incorporate tail risks in the construction of industry interdependency networks. Empirical results show a denser network with heterogeneous central industries in tail cases. Network dynamics demonstrate the variety of interdependency across time. Lower tail interdependency structure gives the most accurate out-of-sample forecast of portfolio returns and network centrality-based trading strategies seem to outperform market portfolios, leading to the possible ’too central to fail’ argument.
网络环境下的行业相互依赖动态
本文对网络环境下的产业互联结构进行了建模。将一般预测模型(Rapach et al. 2016)扩展为分位数LASSO回归,以便在构建行业相互依赖网络时纳入尾部风险。实证结果表明,在尾部案例中,中心产业具有异质性,网络更加密集。网络动态展示了不同时间的相互依赖的多样性。低尾相互依赖结构给出了最准确的投资组合回报的样本外预测,基于网络中心性的交易策略似乎优于市场投资组合,导致可能的“过于中心而不能失败”的论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信