Kalman-Based MIMO Receivers Using Gaussian Sum Approximations

Dawoon Lee, Sooyong Choi
{"title":"Kalman-Based MIMO Receivers Using Gaussian Sum Approximations","authors":"Dawoon Lee, Sooyong Choi","doi":"10.1109/VETECS.2012.6240192","DOIUrl":null,"url":null,"abstract":"This paper proposes a new multiple input multiple output receiver based on the Kalman filtering algorithm. The Kalman filtering algorithm is based on the Gaussian assumption of the input signal. However, the assumption is not appropriate for the digital communication system which has non-Gaussian input signal. The proposed receiver overcomes the problem by using multiple Kalman filters and its output is obtained using the weighted sum of the outputs of the Kalman filters by the Gaussian sum approximation method to make the data signal approximately Gaussian. Simulation results show that the bit error rate (BER) performance of the proposed receiver is better than the previous Kalman-based receivers and its BER performance is close to the maximum likelihood (ML) receiver with lower computational complexity than the ML receiver.","PeriodicalId":333610,"journal":{"name":"2012 IEEE 75th Vehicular Technology Conference (VTC Spring)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 75th Vehicular Technology Conference (VTC Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECS.2012.6240192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new multiple input multiple output receiver based on the Kalman filtering algorithm. The Kalman filtering algorithm is based on the Gaussian assumption of the input signal. However, the assumption is not appropriate for the digital communication system which has non-Gaussian input signal. The proposed receiver overcomes the problem by using multiple Kalman filters and its output is obtained using the weighted sum of the outputs of the Kalman filters by the Gaussian sum approximation method to make the data signal approximately Gaussian. Simulation results show that the bit error rate (BER) performance of the proposed receiver is better than the previous Kalman-based receivers and its BER performance is close to the maximum likelihood (ML) receiver with lower computational complexity than the ML receiver.
基于高斯和近似的卡尔曼MIMO接收机
本文提出了一种基于卡尔曼滤波算法的新型多输入多输出接收机。卡尔曼滤波算法是基于输入信号的高斯假设。然而,对于非高斯输入信号的数字通信系统,该假设并不适用。该接收机通过使用多个卡尔曼滤波器克服了这一问题,并采用高斯和逼近法对卡尔曼滤波器的输出进行加权求和,使数据信号近似于高斯。仿真结果表明,该接收机的误码率性能优于以往的卡尔曼接收机,误码率性能接近最大似然接收机,且计算复杂度低于最大似然接收机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信