Patient similarity using network structure properties in online communities

T. Chomutare
{"title":"Patient similarity using network structure properties in online communities","authors":"T. Chomutare","doi":"10.1109/BHI.2014.6864487","DOIUrl":null,"url":null,"abstract":"The growing amount of user generated content in healthcare social media requires new methods to gain new insights about patients as users of online health communities. One interesting general problem is filtering information and making relevant information more conspicuous to users in Internet websites. Previously, collaborative filtering techniques have been successfully applied in recommender systems for personalizing Internet shopping and movie portals. Current work uses network structures - inferred from patient interactions - to enhance patient-similarity analysis, for predicting the top-N threads in online communities. Using network structure properties unique to healthcare social networks, experimental results based on the Euclidean distance, Pearson correlation and Tanimoto similarity, confirm that community structure properties can enhance recommendations. The results are comparable to other collaborative filtering methods proposed in the literature. These findings have implications for designing personalized health-related social media.","PeriodicalId":177948,"journal":{"name":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2014.6864487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The growing amount of user generated content in healthcare social media requires new methods to gain new insights about patients as users of online health communities. One interesting general problem is filtering information and making relevant information more conspicuous to users in Internet websites. Previously, collaborative filtering techniques have been successfully applied in recommender systems for personalizing Internet shopping and movie portals. Current work uses network structures - inferred from patient interactions - to enhance patient-similarity analysis, for predicting the top-N threads in online communities. Using network structure properties unique to healthcare social networks, experimental results based on the Euclidean distance, Pearson correlation and Tanimoto similarity, confirm that community structure properties can enhance recommendations. The results are comparable to other collaborative filtering methods proposed in the literature. These findings have implications for designing personalized health-related social media.
在线社区中使用网络结构属性的患者相似度
医疗保健社交媒体中越来越多的用户生成内容需要新的方法来获得关于患者作为在线医疗社区用户的新见解。一个有趣的普遍问题是过滤信息,使相关信息对互联网网站的用户更明显。此前,协同过滤技术已成功应用于个性化网络购物和电影门户网站的推荐系统中。目前的工作使用网络结构——从患者互动中推断——来增强患者相似性分析,以预测在线社区中的前n个线程。利用医疗保健社交网络特有的网络结构属性,基于欧几里得距离、Pearson相关性和谷本相似性的实验结果,证实了社区结构属性可以增强推荐。结果与文献中提出的其他协同过滤方法相当。这些发现对设计个性化的健康相关社交媒体具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信