Breast segmentation using k-means algorithm with a mixture of gamma distributions

A. Gumaei, A. El-Zaart, M. Hussien, M. Berbar
{"title":"Breast segmentation using k-means algorithm with a mixture of gamma distributions","authors":"A. Gumaei, A. El-Zaart, M. Hussien, M. Berbar","doi":"10.1109/RELABIRA.2012.6235102","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the main causes of death among women worldwide. Mammography is an effective imaging modality for early diagnosis of breast cancer. Understanding the nature of data in breast images is very important for developing a model that fits well the data. Gaussian distribution is widely used for modeling the data in breast images but due to the asymmetric nature of the distribution of gray levels in mammogram, Gamma distribution is more suitable. Exploiting Gamma distribution for modeling the k-mean method, we developed an efficient technique for the segmentation of mammograms. The approach was tested over several images taken from mini-MIAS (Mammogram Image Analysis Society, UK) database. The experimental results on mammogram images using this technique showed improvement in the accuracy of breast segmentation for breast cancer detection.","PeriodicalId":180400,"journal":{"name":"2012 Symposium on Broadband Networks and Fast Internet (RELABIRA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on Broadband Networks and Fast Internet (RELABIRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELABIRA.2012.6235102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Breast cancer is one of the main causes of death among women worldwide. Mammography is an effective imaging modality for early diagnosis of breast cancer. Understanding the nature of data in breast images is very important for developing a model that fits well the data. Gaussian distribution is widely used for modeling the data in breast images but due to the asymmetric nature of the distribution of gray levels in mammogram, Gamma distribution is more suitable. Exploiting Gamma distribution for modeling the k-mean method, we developed an efficient technique for the segmentation of mammograms. The approach was tested over several images taken from mini-MIAS (Mammogram Image Analysis Society, UK) database. The experimental results on mammogram images using this technique showed improvement in the accuracy of breast segmentation for breast cancer detection.
混合伽玛分布的k-均值算法乳房分割
乳腺癌是全世界妇女死亡的主要原因之一。乳房x光检查是早期诊断乳腺癌的有效影像学手段。了解乳腺图像中数据的本质对于开发适合数据的模型非常重要。高斯分布被广泛用于乳腺图像的数据建模,但由于乳腺图像灰度分布的不对称性质,伽马分布更适合。利用伽玛分布对k-均值方法进行建模,我们开发了一种有效的乳房x光片分割技术。该方法在英国乳房x光图像分析协会(mini-MIAS)数据库中的几张图像上进行了测试。应用该方法对乳房x线图像进行实验,结果表明,该方法在乳腺癌检测中提高了乳房分割的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信