An Undergraduate Study of a Fluids Time-To- Drainage Device

Hasan Ukra, Anna Gavalyan, Ali Alkaribani, Trisheendran S Tenakaran, Ahmed Aljsaar, Danah Abdulkareem, Abdallah Alsaidy, Emanuel De Los Santos, A. Almutairi, D. Boyajian, T. Zirakian
{"title":"An Undergraduate Study of a Fluids Time-To- Drainage Device","authors":"Hasan Ukra, Anna Gavalyan, Ali Alkaribani, Trisheendran S Tenakaran, Ahmed Aljsaar, Danah Abdulkareem, Abdallah Alsaidy, Emanuel De Los Santos, A. Almutairi, D. Boyajian, T. Zirakian","doi":"10.31031/ACET.2019.03.000554","DOIUrl":null,"url":null,"abstract":"In this educational research study, a group of undergraduate students, under the supervision of Dr Boyajian and Dr Zirakian from California State University Northridge, introduce a designed fluid time-to-drainage model as part of the Senior Design undergraduate course. The model was chosen to be a time-to-drainage device due to the high resistance against pressure as well as being impervious to water. The main objective of this project is to experimentally examine the effects of using sharp and round edge orifices under different values of pressure, on the water flow rate and to inspire minority and international students in engineering to learn the effects of this pressure change and using different orifice geometries, on the fluid flow properties. This research endeavour is hoped to serve as a model for future generations of engineering students to better visualize difficult Fluid Mechanics concepts and thus enhance their overall comprehension of such important material..","PeriodicalId":163364,"journal":{"name":"Advancements in Civil Engineering & Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advancements in Civil Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/ACET.2019.03.000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this educational research study, a group of undergraduate students, under the supervision of Dr Boyajian and Dr Zirakian from California State University Northridge, introduce a designed fluid time-to-drainage model as part of the Senior Design undergraduate course. The model was chosen to be a time-to-drainage device due to the high resistance against pressure as well as being impervious to water. The main objective of this project is to experimentally examine the effects of using sharp and round edge orifices under different values of pressure, on the water flow rate and to inspire minority and international students in engineering to learn the effects of this pressure change and using different orifice geometries, on the fluid flow properties. This research endeavour is hoped to serve as a model for future generations of engineering students to better visualize difficult Fluid Mechanics concepts and thus enhance their overall comprehension of such important material..
一种流体时间引流装置的本科生研究
在这项教育研究中,来自加州州立大学北岭分校的一组本科生在Boyajian博士和Zirakian博士的指导下,介绍了一种设计好的流体排水时间模型,作为高级设计本科课程的一部分。该模型被选为一种定时排水装置,因为它具有很高的抗压性和不透水性。该项目的主要目的是通过实验研究在不同压力值下使用锐边和圆边孔对水流速率的影响,并激励工程专业的少数民族和国际学生学习这种压力变化和使用不同几何形状的孔对流体流动特性的影响。这项研究的努力是希望作为一个模型,为未来的工程学生更好地可视化流体力学的困难概念,从而提高他们对这些重要材料的全面理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信