Analyzing the Structure of U.S. Patents Using Patent Families

Jun Nakamitsu, S. Fukuda, Hidetsugu Nanba
{"title":"Analyzing the Structure of U.S. Patents Using Patent Families","authors":"Jun Nakamitsu, S. Fukuda, Hidetsugu Nanba","doi":"10.1109/iiaiaai55812.2022.00038","DOIUrl":null,"url":null,"abstract":"Researchers and developers search for patents in fields related to their own research to obtain information on issues and effective technologies in those fields for use in their research. However, it is impossible to read through the full text of many patents, so a method that enables patent information to be grasped briefly is needed. In this study, we analyze the structure of U.S. patents with the aim of extracting important information. Using Japanese patents with structural tags such as \"field\", \"problem\", \"solution\", and \"effect\", and corresponding U.S. patents (patent families), we automatically created a dataset of 81,405 U.S. patents with structural tags. Furthermore, using this dataset, we conduct an experiment to assign structural tags to each sentence in the U. S. patents automatically. For the embedding layer, we use a language representation model, Bidirectional Encoder Representations from Transformer, pretrained on patent documents and construct a multi-label classifier that classifies a given sentence into one of four categories: \"field\", \"problem\", \"solution\", or \"effect\". Using a loss function that considers the unbalanced amount of data for each structural tag, we are able to classify sentences related to \"field\", \"problem\", \"solution\", and \"effect\" with precision of 0.6994, recall of 0.8291, and F-measure of 0.7426.","PeriodicalId":156230,"journal":{"name":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iiaiaai55812.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Researchers and developers search for patents in fields related to their own research to obtain information on issues and effective technologies in those fields for use in their research. However, it is impossible to read through the full text of many patents, so a method that enables patent information to be grasped briefly is needed. In this study, we analyze the structure of U.S. patents with the aim of extracting important information. Using Japanese patents with structural tags such as "field", "problem", "solution", and "effect", and corresponding U.S. patents (patent families), we automatically created a dataset of 81,405 U.S. patents with structural tags. Furthermore, using this dataset, we conduct an experiment to assign structural tags to each sentence in the U. S. patents automatically. For the embedding layer, we use a language representation model, Bidirectional Encoder Representations from Transformer, pretrained on patent documents and construct a multi-label classifier that classifies a given sentence into one of four categories: "field", "problem", "solution", or "effect". Using a loss function that considers the unbalanced amount of data for each structural tag, we are able to classify sentences related to "field", "problem", "solution", and "effect" with precision of 0.6994, recall of 0.8291, and F-measure of 0.7426.
利用专利族分析美国专利结构
研究人员和开发人员查找与其研究相关领域的专利,以获取有关这些领域的问题和有效技术的信息,以便在其研究中使用。然而,要通读许多专利的全文是不可能的,因此需要一种能够简单掌握专利信息的方法。在这项研究中,我们分析了美国专利的结构,目的是提取重要信息。使用带有“field”、“problem”、“solution”和“effect”等结构标签的日本专利,以及相应的美国专利(专利族),我们自动创建了一个包含81405个带有结构标签的美国专利的数据集。此外,利用该数据集,我们进行了一个实验,自动为美国专利中的每个句子分配结构标签。对于嵌入层,我们使用了一种语言表示模型——来自Transformer的双向编码器表示(Bidirectional Encoder Representations from Transformer),该模型在专利文档上进行了预训练,并构建了一个多标签分类器,该分类器将给定的句子分为四类:“字段”、“问题”、“解决方案”或“效果”。使用考虑每个结构标签的数据量不平衡的损失函数,我们能够对与“field”、“problem”、“solution”和“effect”相关的句子进行分类,其精度为0.6994,召回率为0.8291,F-measure为0.7426。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信