State estimation with Neural Networks and PMU voltage measurements

O. Ivanov, M. Gavrilas
{"title":"State estimation with Neural Networks and PMU voltage measurements","authors":"O. Ivanov, M. Gavrilas","doi":"10.1109/ICEPE.2014.6970056","DOIUrl":null,"url":null,"abstract":"State estimation is used currently in wide area electrical systems for real time analysis. Studies have shown that in HV transmission networks, where system-wide synchronized phasor measurement units are installed, voltage angle measurements can be included in the input measurements data set, with the result of improving the estimation precision. The authors developed in previous papers a SE algorithm based on Multilayer Perceptron Artificial Neural Networks. This paper extends this research by using PMU voltage magnitude and angle measurements in the input data for the ANN estimator, and shows in a case study that the estimation precision is improved.","PeriodicalId":271843,"journal":{"name":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE.2014.6970056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

State estimation is used currently in wide area electrical systems for real time analysis. Studies have shown that in HV transmission networks, where system-wide synchronized phasor measurement units are installed, voltage angle measurements can be included in the input measurements data set, with the result of improving the estimation precision. The authors developed in previous papers a SE algorithm based on Multilayer Perceptron Artificial Neural Networks. This paper extends this research by using PMU voltage magnitude and angle measurements in the input data for the ANN estimator, and shows in a case study that the estimation precision is improved.
用神经网络和PMU电压测量进行状态估计
状态估计是目前广泛应用于电力系统实时分析的一种方法。研究表明,在安装了全系统同步相量测量单元的高压输电网中,可以将电压角测量值纳入输入测量数据集,从而提高了估计精度。作者在之前的论文中开发了一种基于多层感知器人工神经网络的SE算法。本文扩展了这一研究,在神经网络估计器的输入数据中使用PMU电压幅值和角度测量,并通过实例研究表明,估计精度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信