{"title":"A simple rule how to make a reward for learning with human interaction","authors":"K. Kurashige","doi":"10.1109/CIRA.2007.382921","DOIUrl":null,"url":null,"abstract":"Various learning methods are adapted for experimental robot. We can make movement of a robot by giving teaching signals to a robot. But it is heavy for operator to define how to give teaching signals generally because operator must guess and think of a task and environment and define a function to do that. Here the author aim to create teaching signals automatically for each task and environment. In this paper, the author suggest a simple rule which is independent of information about any task and environment to create teaching signals for each task and environment. This rule is that a situation which is often happened is good situation. In this paper, the author adopt reinforcement learning as learning method and a small-sized humanoid robot as application. The author show creating a reward by adapting a rule and show that a robot can learn and make movement.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Various learning methods are adapted for experimental robot. We can make movement of a robot by giving teaching signals to a robot. But it is heavy for operator to define how to give teaching signals generally because operator must guess and think of a task and environment and define a function to do that. Here the author aim to create teaching signals automatically for each task and environment. In this paper, the author suggest a simple rule which is independent of information about any task and environment to create teaching signals for each task and environment. This rule is that a situation which is often happened is good situation. In this paper, the author adopt reinforcement learning as learning method and a small-sized humanoid robot as application. The author show creating a reward by adapting a rule and show that a robot can learn and make movement.